Previous |  Up |  Next

Article

References:
[1] BONDARENKO B. A.: Generalized Pascaľs Triangles and Pyramids, their Fractals, Graphs and Applications. FAN, Tashkent, 1990. (Russian) MR 1069753
[2] BRUCk R. H.: A Survey of Binary Systems. Springer Verlag, Berlin-Gottingen-Heidelberg, 1958. MR 0093552 | Zbl 0081.01704
[3] CULIK K. II.-GRUSKA J.-SALOMAA A.: Systolic trellis automata, Part I. Internat. J. Computer Math. 15 (1984), 195-212. MR 0754266
[4] CULIK K. II.-GRUSKA J.-SALOMAA A.: Systolic trellis automata. Internat. J. Cоmputer Math. 16 (1984), 3-22. MR 0757600 | Zbl 0571.68042
[5] CULIK K. II.-HURD L. P.-YU S.: Computation theoretic aspects of cellular automata. Phys. D 45 (1990), 357-378. MR 1094881 | Zbl 0729.68052
[6] KARI J.: On the inverse neighborhood of reversible cellular automata. In: Lindenmayer Systems, Inpact in Theoretical Computer Science, Computer Graphics and Developmental Biology (G. Rosenberg, A. Salomaa, eds.), Springer Verlag, Berlin-Heidelberg etc, 1992, pp. 477-495. MR 1226709
[7] KOREC I.: Generalized Pascal triangles. Decidability results, Acta Math. Univ. Comenian. 46-47 (1985), 93-130. MR 0872334 | Zbl 0607.05002
[8] KOREC I.: Generalized Pascal triangles. In: Proceedings of the V. Universal Algebra Sympоsium, Turawa, Poland, May 1988 (K. Halkowska, S. Stawski, eds.), World Scientific, Singapore, 1989, pp. 198-218. MR 1084405
[9] KOREC I.: Generalized Pascal triangles, their relation to cellular automata and their elementary theories. In: Proceedings of 7th IMYCS Smolenice, November 16-20, 1992 (K. Dassow, A. Kelemenová, eds.), Gordon and Breach Science Publishers, Yverdon (Switzerland), 1994, pp. 59-70.
[10] RICHARDSON D.: Tesselation with local transformations. J. Cumput. System Sci. 6 (1972), 373-388. MR 0319678
Partner of
EuDML logo