Previous |  Up |  Next

Article

Keywords:
copula; diagonal section; quasi-homogeneity
Summary:
Quasi-homogeneity of copulas is introduced and studied. Quasi-homogeneous copulas are characterized by the convexity and strict monotonicity of their diagonal sections. As a by-product, a new construction method for copulas when only their diagonal section is known is given.
References:
[1] Aczél J.: Lectures on Functional Equations and Their Applications (Math. Sci. Engrg., Vol. 19). Academic Press, New York 1966 MR 0208210
[2] Alsina C., Frank M. J., Schweizer B.: Associative Functions. Triangular Norms and Copulas. World Scientific Publishing, Singapore 2006 MR 2222258 | Zbl 1100.39023
[3] Bertino S.: Sulla dissomiglianza tra mutabili cicliche. Metron 35 (1977), 53–88 Zbl 0437.62026
[4] Baets B. De, Meyer, H. De, Mesiar R.: Asymmetric semilinear copulas. Kybernetika 43 (2007), 221–233 MR 2343397 | Zbl 1136.62350
[5] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Copulas with given diagonal sections: Novel constructions and applications. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 397–410 DOI 10.1142/S0218488507004753 | MR 2362234 | Zbl 1158.62324
[6] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Semilinear copulas. Fuzzy Sets and Systems 159 (2008), 63–76 MR 2371303
[7] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section. Soft Computing 10 (2006), 490–494 DOI 10.1007/s00500-005-0523-7 | Zbl 1098.60016
[8] Durante F., Sempi C.: Semicopulae. Kybernetika 41 (2005), 315–328 MR 2181421
[9] Ebanks B. R.: Quasi-homogeneous associative functions. Internat. J. Math. Math. Sci. 21 (1998), 351–358 DOI 10.1155/S0161171298000489 | MR 1609715 | Zbl 0899.39003
[10] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1977, pp. 129–136 MR 1614666
[11] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez Lallena, eds.), Kluwer, Dordrecht 2002, pp. 81–91 MR 2058982 | Zbl 1135.62334
[12] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 DOI 10.1006/jmva.1998.1809 | MR 1703371
[13] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 MR 2181422
[14] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[15] Nelsen R. B.: An Introduction to Copulas. Second edition (Springer Series in Statistics). Springer-Verlag, New York 2006 MR 2197664 | Zbl 1152.62030
Partner of
EuDML logo