[1] Abed-Meraim K., Qiu, W., Hua Y.: Blind system identification. Proc. IEEE 85 (1997), 1310–1322
[2] Anderson B. D. O., Deistler M.:
Identifiability of dynamic errors-in-variables models. J. Time Ser. Anal. 5 (1984), 1–13
MR 0747410
[3] Anderson B. D. O., Deistler, M., Scherrer W.:
Solution set properties for static errors-in-variables problems. Automatica 32 (1996), 1031–1035
MR 1405459 |
Zbl 0854.93032
[4] Beghelli S., Castaldi P., Guidorzi, R., Soverini U.: A robust criterion for model selection in identification from noisy data. In: Proc. 9th International Conference on Systems Engineering, Las Vegas 1993, pp. 480–484
[5] Beghelli S., Guidorzi, R., Soverini U.:
The Frisch scheme in dynamic system identification. Automatica 26 (1990), 171–176
MR 1101663 |
Zbl 0714.93058
[6] Bobillet W., Grivel E., Guidorzi, R., Najim M.: Noisy speech de-reverberation as a SIMO system identification issue. In: Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux 2005
[7] Bobillet W., Diversi R., Grivel E., Guidorzi R., Najim, M., Soverini U.:
Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes. IEEE Trans. Signal Process. 55 (2007), 5564–5578
MR 2440193
[8] Deistler M.:
Linear errors-in-variables models. In: Time Series and Linear Systems (Lecture Notes in Control and Information Sciences; S. Bittanti, ed.). Springer–Verlag, Berlin 1986, pp. 37–67
MR 0897821
[9] Diversi R., Guidorzi, R., Soverini U.: A new criterion in EIV identification and filtering applications. In: Preprints 13th IFAC Symposium on System Identification, Rotterdam 2003, pp. 1993–1998
[10] Diversi R., Guidorzi, R., Soverini U.: Frisch scheme-based algorithms for EIV identification. In: Proc. 12th IEEE Mediterranean Conference on Control and Automation, Kusadasi 2004
[11] Diversi R., Guidorzi, R., Soverini U.:
Blind identification and equalization of two-channel FIR systems in unbalanced noise environments. Signal Process. 85 (2005), 215–225
Zbl 1148.94395
[12] Diversi R., Guidorzi, R., Soverini U.: A noise-compensated estimation scheme for AR processes. In: Proc. 44th IEEE Conference on Decision and Control and 8th European Control Conference, Seville 2005, pp. 4146–4151
[13] Diversi R., Guidorzi, R., Soverini U.: Yule–Walker equations in the Frisch scheme solution of errors-in-variables identification problems. In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 391–395
[14] Diversi R., Guidorzi, R., Soverini U.:
Identification of autoregressive models in the presence of additive noise. International J. Adaptive Control and Signal Process. 22 (2008), 465–481
MR 2442414
[15] Diversi R., Soverini, U., Guidorzi R.:
A new estimation approach for AR models in presence of noise. In: Preprints 16th IFAC World Congress, Prague 2005
MR 2164442
[16] Fernando K. V., Nicholson H.:
Identification of linear systems with input and output noise: the Koopmans–Levin method. IEE Proc. 132 (1985), 30–36
Zbl 0554.93071
[17] Frisch R.:
Statistical Confluence Analysis by Means of Complete Regression Systems. Economic Institute, Pub. No. 5, Oslo University 1934
Zbl 0011.21903
[18] Guidorzi R.:
Equivalence, invariance and dynamical system canonical modelling. Part I, Kybernetika 25 (1989), 233–257, Part II, Kybernetika 25 (1989), 386–407
Zbl 0699.93006
[19] Guidorzi R.:
Certain models from uncertain data: the algebraic case. Systems Control Lett. 17 (1991), 415–424
MR 1138941 |
Zbl 0749.93018
[20] Guidorzi R.:
Errors-in-variables identification and model uniqueness. In: Statistical Modelling and Latent Variables (K. Haagen, D. J. Bartholomew, and M. Deistler, eds.), North Holland, Amsterdam 1993, pp. 127–150
MR 1236712
[21] Guidorzi R.:
Identification of the maximal number of linear relations from noisy data. Systems Control Lett. 24 (1995), 159–166
MR 1314413 |
Zbl 0877.93131
[22] Guidorzi R.: Identification of multivariable processes in the Frisch scheme context. MTNS’96, St. Louis 1996
[23] Guidorzi R., Diversi R.: Determination of linear relations from real data in the Frisch scheme context. In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 530–535
[24] Guidorzi R., Diversi, R., Soverini U.:
Blind identification and equalization of multichannel FIR systems in unbalanced noise environments. Signal Process. 87 (2007), 654–664
Zbl 1186.94137
[25] Guidorzi R., Diversi R., Soverini, U., Valentini A.: A noise signature approach to fault detection and isolation. In: Proc. 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven 2004
[26] Guidorzi R., Pierantoni M.: A new parametrization of Frisch scheme solutions. In: Proc. XII International Conference on Systems Science, Wroclaw 1995, pp. 114–120
[27] Guidorzi R., Soverini, U., Diversi R.: Multivariable EIV identification. In: Proc. 10th IEEE Mediterranean Conference on Control and Automation, Lisboa 2002
[28] Guidorzi R., Stoian A.: On the computation of the maximal corank of a covariance matrix under the Frisch scheme. In: Proc. 10th IFAC Symposium on System Identification, Copenhagen 1994, pp. 171–173
[29] Kalman R. E.: Identification from real data. In: Current Developments in the Interface: Economics, Econometrics, Mathematics (M. Hazewinkel, H. G. Rinnooy Kan, and D. Reidel, eds.), Dordrecht 1982, pp. 161–196
[30] Kalman R. E.: Nine Lectures on Identification. (Lecture Notes on Economics and Mathematical Systems.) Springer–Verlag, Berlin (to appear)
[31] Kalman R. E.:
System identification from noisy data. In: Dynamical Systems II (A. R. Bednarek and L. Cesari, eds.), Academic Press 1982, pp. 135–164
MR 0703692
[32] Kay S. M.:
The effects of noise on the autoregressive spectral estimator. IEEE Trans. Acoustics, Speech and Signal Process. 27 (1979), 478–485
Zbl 0441.62084
[33] Kay S. M.:
Noise compensation for autoregressive spectral estimates. IEEE Trans. Acoustics, Speech and Signal Process. 28 (1980), 292–303
Zbl 0519.62082
[34] Levin M. J.: Estimation of a system pulse transfer function in the presence of noise. IEEE Trans. Automat. Control 9 (1964), 229–235
[35] Malinvaud E.:
Méthodes statistiques de l’économétrie. Third edition. Dunod, Paris 1980
Zbl 0421.62084
[36] Schachermayer W., Deistler M.:
The set of observationally equivalent errors-in-variables models. Systems Control Lett. 34 (1998), 101–104
MR 1629016 |
Zbl 0902.93067
[37] Söderström T.:
Errors-in-variables methods in system identification. Automatica 43 (2007), 939–958
MR 2306743 |
Zbl 1193.93090
[38] Söderström T.:
Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems. IEEE Trans. Automat. Control 52 (2007), 985–997
MR 2329890
[39] Stoica P., Nehorai A.:
On the uniqueness of prediction error models for systems with noisy input-output data. Automatica 23 (1987), 541–543
Zbl 0616.93074
[40] Tong L., Perreau S.: Multichannel blind identification: from subspace to maximum likelihood methods. Proc. IEEE 86 (1998), 1951–1968
[41] (ed.) S. Van Huffel:
Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling. SIAM, Philadelphia 1997
MR 1447457
[42] Huffel S. Van, (eds.) P. Lemmerling:
Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications. Kluwer Academic Publishers, Dordrecht 2002
MR 1951009
[43] Woodgate K. G.:
An upper bound on the number of linear relations identified from noisy data by the Frisch scheme. Systems Control Lett. 24 (1995), 153–158
MR 1314412 |
Zbl 0877.93130