Previous |  Up |  Next

Article

Keywords:
chaotic synchronization with error bound; non-identical forced oscillator; differential inequality; active control
Summary:
Synchronization with error bound of two non-identical forced oscillators is studied in the paper. By introducing two auxiliary autonomous systems, differential inequality technique and active control technique are used to deal with the synchronization of two non-identical forced oscillators with parameter mismatch in external harmonic excitations. Numerical simulations show the effectiveness of the proposed method.
References:
[1] Bai E. W., Lonngren K. E.: Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons and Fractals 11 (2000), 1041–1044 Zbl 0985.37106
[2] Cai J. P., Wu X. F., Chen S. H.: Synchronization criteria for non-autonomous chaotic systems vie sinusoidal state error feedback control. Physica Scripta 75 (2007), 379–387
[3] Chen H. K.: Chaotic and chaos synchronization of symmetric gyro with linear-plus-cubic damping. J. Sound Vibration 255 (2002), 719–740 MR 1923490
[4] Chen L. J., Li J. B.: Chaotic behavior and subharmonic bifurcations for a rotating pendulum equation. Internat. J. Bifur. Chaos 14 (2004), 3477–3488 MR 2107559 | Zbl 1129.70326
[5] Haeri M., Emadzadeh A. A.: Comparative study of various methods for synchronizing two different chaotic systems. Phys. Lett. A 356 (2006), 59–64 Zbl 1160.37344
[6] Ho M. C., Hung Y. C., Chou C. H.: Phase and anti-phase synchronization of two chaotic systems by using active control. Phys. Lett. A 296 (2002), 43–48 Zbl 1098.37529
[7] Jiang G. P., Tang W. K. S., Chen G. R.: A simple global synchronization criterion for coupled chaotic systems. Chaos, Solitons and Fractals 15 (2003), 925–935 MR 1932235 | Zbl 1065.70015
[8] Li G. H.: Generalized projective synchronization of two chaotic systems by using active control. Chaos, Solitons and Fractals 30 (2006), 77–82 Zbl 1144.37372
[9] Njah A. N., Vincent U. E.: Chaos synchronization between single and double wells Duffing–Van der Pol oscillators using active control. Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.10.038 Zbl 1142.93350
[10] Pecora L. M. L.Carroll T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821–824 MR 1038263 | Zbl 0938.37019
[11] Sun F. Y.: Global chaos synchronization between two new different chaotic systems via active control. Chinese Phys. Lett. 23 (2006), 32–34
[12] Ucar A., Lonngren K. E., Bai E. W.: Chaos synchronization in RCL-shunted Josephson junction via active control. Chaos, Solitons and Fractals 31 (2007), 105–111
[13] Wang J. G., Zhao Y.: Chaotic synchronization of the master slave chaotic systems with different structures based on bang-bang control principle. Chinese Phys. Lett. 22 (2005), 2508–2510
[14] Wu X. F., Cai J. P., Wang M. H.: Master-slave chaos synchronization criteria for the horizontal platform systems via linear state error feedback control. J. Sound Vibration 295 (2006), 378-387 MR 2239755
[15] Wu X. F., Cai J. P., Zhao Y.: Revision and improvement of a theorem for robust synchronization of nonidentical Lur’e systems. IEEE Trans. Circuits and Systems-II 52 (2005), 429–432
[16] Wu X. F., Cai J. P., Wang M. H.: Robust synchronization of chaotic horizontal platform systems with phase difference. J. Sound Vibration 305 (2007), 481–491 MR 2324743
[17] al. Z. F. Zhang et: Qualitative Theory on Differential Equations. Science Press, Beijing 2006 (in Chinese)
Partner of
EuDML logo