Previous |  Up |  Next

Article

Keywords:
non-classical logics; effect algebras; MV-algebras; blocks; states
Summary:
Effect algebras are very natural logical structures as carriers of probabilities and states. They were introduced for modeling of sets of propositions, properties, questions, or events with fuzziness, uncertainty or unsharpness. Nevertheless, there are effect algebras without any state, and questions about the existence (for non-modular) are still unanswered. We show that every Archimedean atomic lattice effect algebra with at most five blocks (maximal MV-subalgebras) has at least one state, which can be obtained by “State Smearing Theorem” from a state on its sharp elements.
References:
[1] Beltrametti E. G., Cassinelli G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading, MA 1981 MR 0635780 | Zbl 0595.03062
[2] Benett M. K., Foulis D. J.: Interval and scale effect algebras. Advan. Math. 19 (1997), 200–215 MR 1459498
[3] Bruns G.: Block-finite orthomodular lattices. Canad. J. Math. 31 (1979), 961–985 MR 0546951 | Zbl 0429.06002
[4] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 MR 0094302 | Zbl 0084.00704
[5] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 MR 1304942
[6] Gudder S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30 MR 1655076 | Zbl 0939.03073
[7] Gudder S. P.: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923 MR 1624277 | Zbl 0932.03072
[8] Höhle U., (eds.) E. P. Klement: Non-Classical Logics and their Applications to Fuzzy Subsets, Vol. 32. Kluwer Academic Publishers, Dordrecht 1998 MR 1345637
[9] Jenča G., Riečanová Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29
[10] Kalmbach G.: Orthomodular Lattices. Academic Press, London – New York 1983 MR 0716496 | Zbl 0554.06009
[11] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531 MR 1353696 | Zbl 0851.03020
[12] Mosná K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electrical Engrg. (Special Issue) 58 (2007), 3–6
[13] Pulmannová S., Riečanová Z.: Block finite atomic orthomodular lattices. J. Pure Appl. Algebra 89 (1993), 295–304 Zbl 0786.06007
[14] Riečanová Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452 MR 1791464
[15] Riečanová Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theoret. Phys. 39 (2000), 231–237 MR 1762594
[16] Riečanová Z.: Proper effect algebras admitting no states. Internat. J. Theoret. Phys. 40 (2001), 1683–1691 MR 1858217 | Zbl 0989.81003
[17] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524 MR 1932844
[18] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 MR 1978468
[19] Riečanová Z.: Basic decomposition of elements and Jauch–Piron effect algebras. Fuzzy Sets and Systems 155 (2005), 138–149 MR 2206659
Partner of
EuDML logo