[1] Chen B. M., Saberi A.:
Necessary and sufficient conditions under which an H$_{2}$ optimal control problem has a unique solution. Internat. J. Control 58 (1993), 337–348
MR 1229854
[2] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A.:
State space solutions to standard H$_{2}$ and H$_{\infty }$ control problems. IEEE Automat. Control 34 (1989), 831–847
MR 1004301
[3] Kučera V.:
Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979, pp. 115–118
MR 0573447
[4] Kučera V.:
The H$_{2}$ control problem: a general transfer-function solution. Internat. J. Control 80 (2007), 800–815
MR 2316383 |
Zbl 1162.93395
[5] Kwakernaak H.: H$_{2}$ optimization – Theory and applications to robust control design. In: Proc. 3rd IFAC Symposium on Robust Control Design, Prague 2000, pp. 437–448
[6] Meinsma G.: On the standard H$_{2}$ problem. In: Proc. 3rd IFAC Symposium on Robust Control Design, Prague 2000, pp. 681–686
[7] Nett C. N., Jacobson C. A., Balas N. J.:
A connection between state-space and doubly coprime fractional representations. IEEE Automat. Control 29 (1984), 831–832
MR 0756933 |
Zbl 0542.93014
[8] Park K., Bongiorno J. J.:
A general theory for the Wiener–Hopf design of multivariable control systems. IEEE Automat. Control 34 (1989), 619–626
MR 0996151 |
Zbl 0682.93020
[9] Saberi A., Sannuti, P., Stoorvogel A. A.:
H$_{2}$ optimal controllers with measurement feedback for continuous-time systems – Flexibility in closed-loop pole placement. Automatica 32 (1996), 1201–1209
MR 1409674 |
Zbl 1035.93503
[10] Stoorvogel A. A.:
The singular H$_{2}$ control problem. Automatica 28 (1992), 627–631
MR 1166033
[11] Vidyasagar M.:
Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, Mass. 1985, pp. 108–116
MR 0787045 |
Zbl 0655.93001
[12] Zhou K.: Essentials of Robust Control$. $ Prentice Hall, Upper Saddle River 1998, pp. 261–265