Previous |  Up |  Next

Article

Keywords:
separating hyperplane; parameters; convex polyhedra; solution set; stability set
Summary:
Separation is a famous principle and separation properties are important for optimization theory and various applications. In practice, input data are rarely known exactly and it is advisable to deal with parameters. In this article, we are concerned with the basic characteristics (existence, description, stability etc.) of separating hyperplanes of two convex polyhedral sets depending on parameters. We study the case, when parameters are situated in one column of the constraint matrix from the description of the given convex polyhedral set. We provide also a lot of examples carried out on PC.
References:
[1] Gal T.: Postoptimal Analyses, Parametric Programming, and Related Topics. McGraw-Hill, New York 1979 MR 0536349 | Zbl 0407.90052
[2] Gal T., Greenberg H. J., eds.: Advances in Sensitivity Analysis and Parametric Programming. Kluwer Academic Publishers, Boston 1997 MR 1482234 | Zbl 0881.00025
[3] Grünbaum B.: Convex Polytopes. Springer, New York 2003 MR 1976856 | Zbl 1033.52001
[4] Grygarová L.: A calculation of all separating hyperplanes of two convex polytopes. Optimization 41 (1997), 57–69 MR 1460220
[5] Grygarová L.: On a calculation of an arbitrary separating hyperplane of convex polyhedral sets. Optimization 43 (1998), 93–112 MR 1638843 | Zbl 0902.90130
[6] Hladík M.: Explicit description of all separating hyperplanes of two convex polyhedral sets with RHS-parameters. In: Proc. WDS’04, Part I (J. Šafránková, ed.), Matfyzpress, Praha 2004, pp. 63–70
[7] Kemp M. C., Kimura Y.: Introduction to Mathematical Economics. Springer, New York 1978 MR 0506399 | Zbl 0387.90004
[8] Klee V.: Separation and support properties of convex sets – a survey. In: Control Theory and the Calculus of Variations (A. V. Balakrishnan, ed.), Academic Press, New York 1969, pp. 235–303 MR 0394357
[9] Nožička F., Guddat J., Hollatz, H., Bank B.: Theorie der linearen parametrischen Optimierung. Akademie-Verlag, Berlin 1974 Zbl 0284.90053
[10] Nožička F., Grygarová, L., Lommatzsch K.: Geometrie konvexer Mengen und konvexe Analysis. Akademie-Verlag, Berlin 1988 MR 0966885
[11] Schrijver A.: Theory of Linear and Integer Programming. Wiley, Chichester 1998 MR 0874114 | Zbl 0970.90052
Partner of
EuDML logo