[1] Daum F. E.: New exact nonlinear filters. In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988, pp. 199–226
[2] Higham D. J., Kloeden P. E.: Maple and Matlab for Stochastic Differential Equations in Finance. Technical Report. University of Strathclyde 2001
[3] Chang J. S., Cooper G.:
A practical difference scheme for Fokker–Planck equations. J. Comput. Phys. 6 (1970), 1–16
Zbl 0221.65153
[4] Moral P. del, Jacod J.:
Interacting particle filtering with discrete observations. In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas, and N. Gordon, eds.), Springer-Verlag, New York 2001, pp. 43–75
MR 1847786
[5] Jazwinski A. H.:
Stochastic Processes and Filtering Theory. Academic Press, New York 1970
Zbl 0203.50101
[6] Kalman R. E., Bucy R. S.:
New results in linear filtering and prediction theory. J. Basic Engrg. 83 (1961), 95–108
MR 0234760
[7] Kouritzin M. A.:
On exact filters for continuous signals with discrete observations. IEEE Trans. Automat. Control 43 (1998), 709–715
MR 1618075 |
Zbl 0908.93064
[8] Kushner H. J., Budhijara A. S.:
A nonlinear filtering algorithm based on an approximation of the conditional distribution. IEEE Trans. Automat. Control 45 (2000), 580–585
MR 1762882
[9] LeVeque R. J.:
Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York 2002
MR 1925043 |
Zbl 1010.65040
[10] Lototsky S. V., Rozovskii B. L.:
Recursive nonlinear filter for a continuous-discrete time model: Separation of parameters and observations. IEEE Trans. Automat. Control 43 (1998), 1154–1158
MR 1636479 |
Zbl 0957.93085
[11] Mirkovic D.: $N$-dimensional Finite Element Package. Technical Report. Department of Mathematics, Iowa State University 1996
[12] Park B. T., Petrosian V.: Fokker–Planck equations of stochastic acceleration: A study of numerical methods. Astrophys. J., Suppl. Ser. 103 (1996), 255–267
[13] Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T.:
Numerical Recipes. Cambridge University Press, New York 1986
MR 0833288 |
Zbl 1132.65001
[15] Schmidt G. C.:
Designing nonlinear filters based on Daum’s theory. J. Guidance, Control and Dynamics 16 (1993), 371–376
Zbl 0775.93283
[16] Sorenson H. W., Alspach D. L.:
Recursive Bayesian estimation using Gaussian sums. Automatica 7 (1971), 465–479
MR 0321581 |
Zbl 0219.93020
[17] Spencer B. F., Bergman L. A.: On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems. Nonlinear Dynamics 4 (1993), 357–372
[18] Spencer B. F., Wojtkiewicz S. F., Bergman L. A.: Some experiments with massively parallel computation for Monte Carlo simulation of stochastic dynamical systems. In: Proc. Second Internat. Conference on Computational Stochastic Mechanics, Athens 1994
[19] Šimandl M., Švácha J.: Nonlinear filters for continuous-time processes. In: Proc. 5th Internat. Conference on Process Control, Kouty nad Desnou 2002
[20] Šimandl M., Královec J.: Filtering, prediction and smoothing with Gaussian sum Rrpresentation. In: Proc. Symposium on System Identification. Santa Barbara 2000
[21] Šimandl M., Královec, J., Söderström T.:
Anticipative grid design in point-mass approach to nonlinear state estimation. IEEE Trans. Automat. Control 47 (2002), 699–702
MR 1893533
[22] Šimandl M., Královec, J., Söderström T.:
Advanced point–mass method for nonlinear state estimation. Automatica 42 (2006), 1133–1145
Zbl 1118.93052
[23] Šimandl M., Švácha J.: Separation approach for numerical solution of the Fokker–Planck equation in estimation problem. In: Preprints of 16th IFAC World Congress. Prague 2005
[24] Zhang D. S., Wei G. W., Kouri D. J., Hoffman D. K.: Numerical method for the nonlinear Fokker–Planck equation. Amer. Physical Society 56 (1997), 1197–1206
[25] Zorzano M. P., Mais, H., Vazquez L.:
Numerical solution for Fokker–Planck equations in accelerators. Phys. D: Nonlinear Phenomena 113 (1998), 379–381
Zbl 0962.82055