[3] Dewynne J. N., Whalley A. E., Wilmott P.:
Path-dependent options and transaction costs. In: Mathematical Models in Finance (S. D. Howison, F. P. Kelly, and P. Wilmott, eds.), Chapman and Hall, London 1995, pp. 67–79
Zbl 0854.90009
[4] Hoggard T., Whalley A. E., Wilmott P.: Hedging option portfolios in the presence of transaction costs. Adv. in Futures and Options Res. 7 (1994), 21–35
[5] Hull J.:
Options, Futures, and Other Derivatives. Fourth edition. Prentice-Hall, New Jersey 2000
Zbl 1087.91025
[6] Imai H.:
Some methods for removing singularities and infinity in numerical simulations. In: Proc. Third Polish–Japanese Days on Mathematical Approach to Nonlinear Phenomena: Modeling, Analysis and Simulations (T. Aiki, N. Kenmochi, M. Niezgódka and M. Ôtani, eds.), Gakuto, Tokyo 2005, pp. 103–118
MR 2232832
[7] Imai H., Ishimura N., Mottate, I., Nakamura M. A.:
On the Hoggard–Whalley–Wilmott equation for the pricing of options with transaction costs. Asia–Pacific Financial Markets 13 (2007), 315–326
DOI 10.1007/s10690-007-9047-8
[8] Ishimura N.: Remarks on the nonlinear partial differential equations of Black–Scholes type with transaction costs. preprint. Submitted
[13] Wilmott P.: Paul Wilmott on Quantitative Finance, Vol. I, II. Wiley, New York 2000
[14] Wilmott P., Howison, S., Dewynne J.:
The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge 1995
MR 1357666 |
Zbl 0842.90008