Previous |  Up |  Next

Article

Keywords:
feature selection; branch & bound; sequential search; mixture model
Summary:
The paper gives an overview of feature selection techniques in statistical pattern recognition with particular emphasis on methods developed within the Institute of Information Theory and Automation research team throughout recent years. Besides discussing the advances in methodology since times of Perez’s pioneering work the paper attempts to put the methods into a taxonomical framework. The methods discussed include the latest variants of the optimal algorithms, enhanced sub-optimal techniques and the simultaneous semi- parametric probability density function modelling and feature space selection method. Some related issues are illustrated on real data by means of the Feature Selection Toolbox software.
References:
[1] Das S.: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th Internat. Conference Machine Learning, 2001, pp. 74–81
[2] Dash M., Choi K., Scheuermann, P., Liu H.: Feature selection for clustering – a Filter solution. In: Proc. Second Internat. Conference Data Mining, 2002, pp. 15–122
[3] Devijver P. A., Kittler J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs, NJ 1982 MR 0692767 | Zbl 0542.68071
[4] Ferri F. J., Pudil P., Hatef, M., Kittler J.: Comparative study of techniques for large-scale feature selection. In: Pattern Recognition in Practice IV (E. S. Gelsema and L. N. Kanal, eds.), Elsevier Science B.V., 1994, pp. 403–413
[5] Fukunaga K.: Introduction to Statistical Pattern Recognition. Academic Press, New York 1990 MR 1075415 | Zbl 0711.62052
[6] Graham M. W., Miller D. J.: Unsupervised learning of parsimonious mixtures on large spaces with integrated feature and component selection. IEEE Trans. Signal Process. 54 (2006), 4, 1289–1303
[7] Hodr R., Nikl J., Řeháková B., Veselý, A., Zvárová J.: Possibilities of a prognostic assessment quoad vitam in low birth weight newborns. Acta Facult. Med. Univ. Brunesis 58 (1977), 345–358
[8] Chen X.: An improved branch and bound algorithm for feature selection. Pattern Recognition Lett. 24 (2003), 12, 1925–1933
[9] Jain A. K., Zongker D.: Feature selection: Evaluation, application and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), 2, 153–158
[10] Jain A. K., Duin R. P. W., Mao J.: Statistical pattern eecognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 2, 4–37
[11] Kohavi R., John G. H.: Wrappers for feature subset selection. Artificial Intelligence 97 (1997), 1–2, 273–324 Zbl 0904.68143
[12] Kudo M., Sklansky J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 (2000), 1, 25–41
[13] Law M. H., Figueiredo M. A. T., Jain A. K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 1154–1166
[14] Liu H., Yu L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowledge Data Engrg. 17 (2005), 491–502
[15] Mayer H. A., Somol P., Huber, R., Pudil P.: Improving statistical measures of feature subsets by conventional and evolutionary approaches. In: Proc. 3rd IAPR Internat. Workshop on Statistical Techniques in Pattern Recognition, Alicante 2000, pp. 77–81 Zbl 0996.68593
[16] McKenzie P., Alder M.: Initializing the EM Algorithm for Use in Gaussian Mixture Modelling. University of Western Australia, 1994
[17] McLachlan G. J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York 1992 MR 1190469 | Zbl 1108.62317
[18] McLachlan G. J., Peel D.: Finite Mixture Models. Wiley, New York 2000 MR 1789474 | Zbl 0963.62061
[19] Murphy P. M., Aha D. W.: UCI Repository of Machine Learning Databases [ftp. ics.uci.edu]. University of California, Depart ment of Information and Computer Science, Irvine 1994
[20] Narendra P. M., Fukunaga K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Computers 26 (1977), 917–922
[21] Novovičová J., Pudil, P., Kittler J.: Divergence based feature selection for multimodal class densities. IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996), 2, 218–223
[22] Novovičová J., Pudil P.: Feature selection and classification by modified model with latent structure. In: Dealing With Complexity: Neural Network Approach, Springer–Verlag, Berlin 1997, pp. 126–140
[23] Pudil P., Novovičová, J., Kittler J.: Floating search methods in feature selection. Pattern Recognition Lett. 15 (1994), 11, 1119–1125
[24] Pudil P., Novovičová, J., Kittler J.: Feature selection based on approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 1389–1398
[25] Pudil P., Novovičová, J., Kittler J.: Simultaneous learning of decision rules and important attributes for classification problems in image analysis. Image Vision Computing 12 (1994), 193–198
[26] Sardo L., Kittler J.: Model complexity validation for PDF estimation using Gaussian mixtures. In: Proc. 14th Internat. Conference on Pattern Recognition, Vol. 2, 1998, pp. 195–197
[27] Sebban M., Nock R.: A Hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35 (2002), 835–846 Zbl 0997.68115
[28] Siedlecki W., Sklansky J.: On automatic feature selection. Internat. J. Pattern Recognition Artif. Intell. 2 (1988), 2, 197–220
[29] Somol P., Pudil P., Novovičová, J., Paclík P.: Adaptive floating search methods in feature selection. Pattern Recognition Lett. 20 (1999), 11 – 13, 1157–1163
[30] Somol P., Pudil P.: Oscillating search algorithms for feature selection. In: Proc. 15th IAPR Internat. Conference on Pattern Recognition, 2000, pp. 406–409
[31] Somol P., Pudil P.: Feature Selection Toolbox. Pattern Recognition 35 (2002), 12, 2749–2759 Zbl 1029.68606
[32] Somol P., Pudil. P., Kittler J.: Fast branch & bound algorithms for optimal feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 7, 900–912
[33] Somol P., Pudil, P., Grim J.: On prediction mechanisms in fast branch & bound algorithms. In: Lecture Notes in Computer Science 3138, Springer–Verlag, Berlin 2004, pp. 716–724 Zbl 1104.68694
[34] Somol P., Novovičová, J., Pudil P.: Flexible-hybrid sequential floating search in statistical feature selection. In: Lecture Notes in Computer Science 4109, Springer–Verlag, Berlin 2006, pp. 632–639
[35] Theodoridis S., Koutroumbas K.: Pattern Recognition. Second edition. Academic Press, New York 2003 Zbl 1093.68103
[36] Wang Z., Yang, J., Li G.: An improved branch & bound algorithm in feature selection. In: Lecture Notes in Computer Science 2639, Springer, Berlin 2003, pp. 549–556 Zbl 1026.68591
[37] Webb A.: Statistical Pattern Recognition. Second edition. Wiley, New York 2002 MR 2191640 | Zbl 1237.68006
[38] Yu B., Yuan B.: A more efficient branch and bound algorithm for feature selection. Pattern Recognition 26 (1993), 883–889
[39] Yu L., Liu H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proc. 20th Internat. Conf. Machine Learning, 2003, pp. 856–863
[40] Benda J. Zvárová a J.: Systém programů TIBIS. Ústav hematologie a krevní transfuze, Praha 1975 (in Czech)
[41] Zvárová J., Perez A., Nikl, J., Jiroušek R.: Data reduction in computer-aided medical decision-making. In: MEDINFO 83 (J. H. van Bemmel, M. J. Ball, and O. Wigertz, eds.), North Holland, Amsterdam 1983, pp. 450–453
[42] Zvárová J., Studený M.: Information theoretical approach to constitution and reduction of medical data. Internat. J. Medical Informatics 45 (1997), 1 – 2, 65–74
Partner of
EuDML logo