Previous |  Up |  Next

Article

Keywords:
data smoothing; least squares and related methods; linear regression; approximation by polynomials; interpolation; computer aided design (modeling of curves and surfaces); surface approximation
Summary:
A bicubic model for local smoothing of surfaces is constructed on the base of pivot points. Such an approach allows reducing the dimension of matrix of normal equations more than twice. The model enables to increase essentially the speed and stability of calculations. The algorithms, constructed by the aid of the offered model, can be used both in applications and the development of global methods for smoothing and approximation of surfaces.
References:
[1] Ahlberg J. H., Nilson E. N. L.Walsh J.: The Theory of Splines and Their Applications. Academic Press, New York 1967 MR 0239327 | Zbl 0238.65001
[2] Davydov O., Zeilfelder F.: Scattered data fitting by direct extension of local polynomials with bivariate splines. Adv. Comp. Math. 21 (2004), 223–271 MR 2073142
[3] Boor C. de: Bicubic spline interpolation. J. Math. Phys. 41 (1962), 212–218 MR 0158512 | Zbl 0108.27103
[4] Dikoussar N. D.: Function parametrization by using 4-point transforms. Comput. Phys. Comm. 99 (1997), 235–254 Zbl 0927.65009
[5] Dikoussar N. D.: Adaptive projective filters for track finding. Comput. Phys. Comm. 79 (1994), 39–51
[6] Dikoussar N. D., Török, Cs.: Automatic knot finding for piecewise-cubic approximation. Math. Model. T-18 (2006), 3, 23–40 MR 2255951 | Zbl 1099.65014
[8] Farin G. E.: Triangular Bernstein–Bezier patches. Comput. Aided Geom. Design 3 (1986), 2, 83–127 MR 0867116
[9] Farin G.: History of curves and surfaces in CAGD. In: Handbook of CAGD (G. Farin, M. S. Kim and J. Hoschek, eds.), North Holland, Amsterdam 2002 MR 1928534
[10] Härdle W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge 1990 MR 1161622 | Zbl 0851.62028
[11] Loader C.: Smoothing: Local regression techniques In: Handbook of Computational Statistics (J. E. Gentle et al., eds.), Springer–Verlag, Berlin 2004 MR 2090154
[12] Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, New York 1999 MR 2479996 | Zbl 1170.94003
[13] Riplay B. D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge 1996 MR 1438788
[14] Seber G. A.: Linear Regression Analysis. Wiley, New York 1977 MR 0436482 | Zbl 1029.62059
[15] Török, Cs.: 4-point transforms and approximation. Comput. Phys. Comm. 125 (2000), 154–166
[16] Török, Cs., Dikoussar N. D.: Approximation with discrete projective transformation. Comput. Math. Appl. 38 (1999), 211–220 MR 1718884 | Zbl 1058.65506
[17] Török, Cs., Kepič T.: Data compression based on auto-tracking piecewise cubic approximation and wavelets. In: SICAM Plovdiv 2005, p. 274
[18] Wahba G.: Spline Models for Observational Data. SIAM, Philadelphia 1990 MR 1045442 | Zbl 0813.62001
Partner of
EuDML logo