[1] Arendacká A.: Approximate confidence intervals on the variance component in a general case of a two-component model. In: Proc. ROBUST 2006 (J. Antoch and G. Dohnal, eds.), Union of the Czech Mathematicians and Physicists, Prague 2006, pp. 9–17
[3] Boardman T. J.:
Confidence intervals for variance components – a comparative Monte Carlo study. Biometrics 30 (1974), 251–262
Zbl 0286.62055
[4] Burdick R. K., Graybill F. A.:
Confidence Intervals on Variance Components. Marcel Dekker, New York 1992
MR 1192783 |
Zbl 0755.62055
[5] El-Bassiouni M. Y.:
Short confidence intervals for variance components. Comm. Statist. Theory Methods 23 (1994), 7, 1951–1933
MR 1281896 |
Zbl 0825.62194
[6] Hartung J., Knapp G.:
Confidence intervals for the between group variance in the unbalanced one-way random effects model of analysis of variance. J. Statist. Comput. Simulation 65 (2000), 4, 311–323
MR 1847242 |
Zbl 0966.62044
[7] Park D. J., Burdick R. K.:
Performance of confidence intervals in regression models with unbalanced one-fold nested error structures. Comm. Statist. Simulation Computation 32 (2003), 3, 717–732
MR 1998237 |
Zbl 1081.62540
[8] Seely J., El-Bassiouni Y.:
Applying Wald’s variance component test. Ann. Statist. 11 (1983), 1, 197–201
MR 0684876 |
Zbl 0516.62028
[9] Tate R. F., Klett G. W.:
Optimal confidence intervals for the variance of a normal distribution. J. Amer. Statist. Assoc. 54 (1959), 287, 674–682
MR 0107926 |
Zbl 0096.12801
[10] Thomas J. D., Hultquist R. A.:
Interval estimation for the unbalanced case of the one-way random effects model. Ann. Statist. 6 (1978), 3, 582–587
MR 0484702 |
Zbl 0386.62057
[11] Tukey J. W.: Components in regression. Biometrics 7 (1951), 1, 33–69
[12] Wald A.:
A note on the analysis of variance with unequal class frequencies. Ann. Math. Statist. 11 (1940), 96–100
MR 0001502
[14] Williams J. S.:
A confidence interval for variance components. Biometrika 49 (1962), 1/2, 278–281
MR 0144424 |
Zbl 0138.13101