[1] Allen E. J.:
Stochastic differential equations and persistence time for two interacting populations. Dynamics of Continuous, Discrete and Impulsive Systems 5 (1999), 271–281
MR 1678255 |
Zbl 0946.60058
[2] Allen L. J. S., Kirupaharan N.:
Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens. Internat. J. Num. Anal. Model. 2 (2005), 329–344
MR 2112651 |
Zbl 1080.34033
[3] Andersson H., Britton T.:
Stochastic Epidemic Models and Their Statistical Analysis. (Lecture Notes in Statistics 151.) Springer–Verlag, New York 2000
MR 1784822 |
Zbl 0951.92021
[4] Bailey N. T. J.:
The Mathematical Theory of Epidemics. Hafner Publishing Comp., New York 1957
MR 0095085
[5] Ball F., O’Neill P.:
A modification of the general stochastic epidemic motivated by AIDS modelling. Adv. in Appl. Prob. 25 (1993), 39–62
MR 1206532 |
Zbl 0777.92018
[7] Daley D. J., Gani J.:
Epidemic Modelling; An Introduction. Cambridge University Press, Cambridge 1999
MR 1688203 |
Zbl 0964.92035
[8] Greenhalgh D.:
Stochastic Processes in Epidemic Modelling and Simulation. In: Handbook of Statistics 21 (D. N. Shanbhag and C. R. Rao, eds.), North–Holland, Amsterdam 2003, pp. 285–335
MR 1973547 |
Zbl 1017.92030
[9] Hurt J.: Mathematica$^{®}$ program for Kermack–McKendrick model. Department of Probability and Statistics, Charles University in Prague 2005
[10] Kallenberg O.:
Foundations of Modern Probability. Second edition. Springer–Verlag, New York 2002
MR 1876169 |
Zbl 0996.60001
[11] Kendall D. G.:
Deterministic and stochastic epidemics in closed population. In: Proc. Third Berkeley Symp. Math. Statist. Probab. 4, Univ. of California Press, Berkeley, Calif. 1956, pp. 149–165
MR 0084936
[12] Kermack W. O., McKendrick A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London Ser. A 115 (1927), 700–721
[13] Kirupaharan N.:
Deterministic and Stochastic Epidemic Models with Multiple Pathogens. PhD Thesis, Texas Tech. Univ., Lubbock 2003
MR 2704799 |
Zbl 1080.34033
[14] Kirupaharan N., Allen L. J. S.:
Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Bull. Math. Biol. 66 (2004), 841–864
MR 2255779
[15] Rogers L. C. G., Williams D.:
Diffusions, Markov Processes and Martingales. Vol. 1: Foundations. Cambridge University Press, Cambridge 2000
MR 1796539 |
Zbl 0977.60005
[16] Rogers L. C. G., Williams D.:
Diffusions, Markov Processes and Martingales. Vol. 2: Itô Calculus. Cambridge University Press, Cambridge 2000
MR 1780932 |
Zbl 0977.60005
[17] Štěpán J., Dostál P.:
The $dX(t)=Xb(X)dt + X\sigma (X)\,dW$ equation and financial mathematics I. Kybernetika 39 (2003), 653–680
MR 2035643
[18] Štěpán J., Dostál P.:
The $dX(t)=Xb(X)dt + X\sigma (X)dW$ equation and financial mathematics II. Kybernetika 39 (2003), 681–701
MR 2035644
[19] Subramaniam R., Balachandran, K., Kim J. K.:
Existence of solution of a stochastic integral equation with an application from the theory of epidemics. Nonlinear Funct. Anal. Appl. 5 (2000), 23–29
MR 1795707