Previous |  Up |  Next

Article

Keywords:
copula; horizontal section; vertical section; binary aggregation operator
Summary:
In this paper we study the set of copulas for which both a horizontal section and a vertical section have been given. We give a general construction for copulas of this type and we provide the lower and upper copulas with these sections. Symmetric copulas with given horizontal section are also discussed, as well as copulas defined on a grid of the unit square. Several examples are presented.
References:
[1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: Properties, classes and construction methods. In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–107 MR 1936383 | Zbl 1039.03015
[2] Carley H.: Maximum and minimum extensions of finite subcopulas. Comm. Statist. Theory Methods 31 (2002), 2151–2166 MR 1945852 | Zbl 1075.62558
[3] Cherubini U., Luciano, E., Vecchiato W.: Copula Methods in Finance. Wiley, New York 2004 MR 2250804 | Zbl 1163.62081
[4] Baets B. De, Meyer H. De: Orthogonal grid construction for copulas. IEEE Trans. Fuzzy Systems (2007), to appear
[5] Durante F., Mesiar R., Papini P. L., Sempi C.: 2-increasing binary aggregation operators. Inform. Sci. 177 (2007), 111–129 MR 2272737 | Zbl 1142.68541
[6] Durante F., Sempi C.: Copula and semicopula transforms. Internat. J. Math. Sci. 2005 (2005), 645–655 MR 2172400 | Zbl 1078.62055
[7] Erdely A., González-Barrios J. M.: On the construction of families of absolutely continuous copulas with given restrictions. Comm. Statist. Theory Methods 35 (2006), 649–659 MR 2282880 | Zbl 1098.60017
[8] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
[9] Frees E. W., Valdez E. A.: Understanding relationships using copulas. North Amer. Act. J. 2 (1998), 1–25 MR 1988432 | Zbl 1081.62564
[10] Genest C., Favre A.-C.: Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrologic Engrg. 12 (2007), to appear
[11] Joe H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London 1997 MR 1462613 | Zbl 0990.62517
[12] Klement E. P., Kolesárová A.: Extensions to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 MR 2181422
[13] Klement E. P., Kolesárová A., Mesiar, R., Sempi C.: Copulas constructed from the horizontal section. Comm. Statist. Theory Methods, to appear MR 2398066
[14] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[15] Klement E. P., Mesiar, R., Pap E.: Transformations of copulas. Kybernetika 41 (2005), 425–434 MR 2180355
[16] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete copulas. IEEE Trans. Fuzzy Systems 14 (2006), 698–705
[17] McNeil A. J., Frey, R., Embrechts P.: Quantitative Risk Management. Concepts, Techniques and Tools. Princeton University Press, Princeton, N.J. 2005 MR 2175089 | Zbl 1089.91037
[18] Mesiar R., Szolgay J.: W-ordinals sum of copulas and quasi-copulas. In: Proc. MAGIA 2004 Conference, Kočovce 2004, pp. 78–83
[19] Morillas P. M.: A method to obtain new copulas from a given one. Metrika 61 (2005), 169–184 MR 2159414 | Zbl 1079.62056
[20] Nelsen R. B.: An Introduction to Copulas. Springer, New York 2006 MR 2197664 | Zbl 1152.62030
[21] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A.: Bivariate copulas with cubic sections. J. Nonparametr. Statist. 7 (1997), 205–220 MR 1443354
[22] Nguyen H. T., Walker E. A.: A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Raton 2006 MR 2180829 | Zbl 1083.03031
[23] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Bivariate copulas with quadratic sections. J. Nonparametr. Statist. 5 (1995), 323–337 MR 1379534 | Zbl 0857.62060
[24] Salvadori G., Michele C. De, Kottegoda N. T., Rosso R.: Extremes in Nature. An Approach Using Copulas. (WTS Library Series, Vol. 56.) Springer–Verlag, Berlin 2007
[25] Schweizer B., Sklar A.: Probabilistic Metric Spaces. Elsevier, New York 1983 MR 0790314 | Zbl 0546.60010
[26] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
[27] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 MR 0345164 | Zbl 0292.60036
Partner of
EuDML logo