[1] Baczyński M., Jayaram B.:
On the characterizations of $(S,N)$-implications. Fuzzy Sets and Systems 158 (2007), 1713–1727
MR 2341333 |
Zbl 1168.03322
[2] Balasubramaniam J.:
Contrapositive symmetrization of fuzzy implications – Revisited. Fuzzy Sets and Systems 157 (2006), 2291–2310
MR 2251837
[3] Balasubramaniam J.:
Yager’s new class of implications $J_f$ and some classical tautologies. Inform. Sci. 177 (2007), 930–946
MR 2288674 |
Zbl 1142.68539
[4] Dubois D., Prade H.:
Fuzzy sets in approximate reasoning. Part I. Inference with possibility distributions. Fuzzy Sets and Systems 40 (1991), 143–202
MR 1103660 |
Zbl 0722.03018
[5] Fodor J. C., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
[8] Klir G. J., Yuan, Bo:
Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, Englewood Cliffs, N.J. 1995
MR 1329731 |
Zbl 0915.03001
[9] Pei D.:
$R_0$ implication: characteristics and applications. Fuzzy Sets and Systems 131 (2002), 297-302
MR 1939842 |
Zbl 1015.03034
[10] Trillas E., Valverde L.:
On some functionally expressable implications for fuzzy set theory. In: Proc. 3rd Internat. Seminar on Fuzzy Set Theory (E. P. Klement, ed.), Johannes Kepler Universität, Linz 1981, pp. 173–190
MR 0646807 |
Zbl 0498.03015
[11] Türksen I. B., Kreinovich, V., Yager R. R.:
A new class of fuzzy implications – Axioms of fuzzy implication revisited. Fuzzy Sets and Systems 100 (1998), 267–272
MR 1663741 |
Zbl 0939.03030
[12] Yager R. R.:
On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 193–216
MR 2103181 |
Zbl 1095.68119