[1] Adámek J., Herrlich, H., Strecker G. E.:
Abstract and Concrete Categories. Wiley, New York 1990
MR 1051419 |
Zbl 1113.18001
[3] Birkhoff G.:
Lattice Theory. Third edition. Amer. Math. Soc. Colloquium Publications, Amer. Math. Soc., Providence, RI 1967
MR 0227053 |
Zbl 0537.06001
[4] Calvo T., Mayor, G., (eds.) R. Mesiar:
Aggregation Operators. New Trends and Applications. (Studies in Fuzziness and Soft Computing, Vol. 97.) Physica-Verlag, Heidelberg 2002
MR 1936383 |
Zbl 0983.00020
[5] Deschrijver G., Kerre E. E.:
On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133 (2003), 227–235
MR 1949024 |
Zbl 1013.03065
[6] Deschrijver G., Kerre E. E.:
Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets and Systems 153 (2005), 229–248
MR 2150282 |
Zbl 1090.03024
[7] Deschrijver G., Kerre E. E.:
Triangular norms and related operators in L$^{\ast }$-fuzzy set theory. In: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 231–259
MR 2165237 |
Zbl 1079.03043
[8] Dubois D., Prade H.:
Fuzzy Sets and Systems. Theory and Applications. Academic Press, New York 1980
MR 0589341 |
Zbl 0444.94049
[10] Höhle U., (eds.) S. E. Rodabaugh:
Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. Kluwer Academic Publishers, Boston 1999
MR 1788899 |
Zbl 0942.00008
[11] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Vol. 8 of Trends in Logic. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[12] Lázaro J., Calvo T.: XAO Operators – The interval universe. In: Proc. 4th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2005), pp. 198–203
[14] Sambuc R.: Fonctions $\Phi $-floues. Application à l’aide au diagnostic en pathologie thyroidienne, Ph. D. Thesis, Université de Marseille 1975