Previous |  Up |  Next

Article

Title: Open problems posed at the eighth international conference on fuzzy set theory and applications (English)
Author: Mesiar, Radko
Author: Klement, Erich Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 42
Issue: 2
Year: 2006
Pages: 225-235
Summary lang: English
.
Category: math
.
Summary: Several open problems posed during FSTA 2006 (Liptovský Ján, Slovakia) are presented. These problems concern the classification of strict triangular norms, Lipschitz t-norms, interval semigroups, copulas, semicopulas and quasi- copulas, fuzzy implications, means, fuzzy relations, MV-algebras and effect algebras. (English)
Keyword: triangular norm
Keyword: copula
Keyword: fuzzy implication
Keyword: fuzzy relation
Keyword: MV algebra
Keyword: effect algebra
MSC: 03B52
MSC: 03E72
MSC: 06A99
MSC: 06D35
idZBL: Zbl 1249.03099
idMR: MR2241786
.
Date available: 2009-09-24T20:15:28Z
Last updated: 2015-03-28
Stable URL: http://hdl.handle.net/10338.dmlcz/135710
.
Reference: [1] Aczél J.: Lectures on Functional Equations and their Applications.Academic Press, New York 1966 MR 0208210
Reference: [2] Alsina C., Frank M. J., Schweizer B.: Problems on associative functions.Aequationes Math. 66 (2003), 128–140 Zbl 1077.39021, MR 2003460, 10.1007/s00010-003-2673-y
Reference: [3] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85–89 Zbl 0798.60023, MR 1223530, 10.1016/0167-7152(93)90001-Y
Reference: [4] Baczyński M., Drewniak J.: Conjugacy classes of fuzzy implication.In: Computational Intelligence: Theory and Applications (B. Reusch, ed., Lecture Notes in Computer Science 1625). Springer–Verlag, Berlin 1999, pp. 287–298 MR 1713698
Reference: [5] Budinčević M., Kurilić M. S.: A family of strict and discontinuous triangular norms.Fuzzy Sets and Systems 95 (1998), 381–384 Zbl 0922.04006, MR 1609804
Reference: [6] Butnariu D., Klement E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions.Kluwer Academic Publishers, Dordrecht 1993 Zbl 0804.90145, MR 2867321
Reference: [7] Butnariu D., Klement E. P., Mesiar, R., Navara M.: Sufficient triangular norms in many-valued logics with standard negation.Arch. Math. Logic 44 (2005), 829–849 Zbl 1085.03018, MR 2192157, 10.1007/s00153-004-0267-6
Reference: [8] Darsow W. F., Nguyen, B., Olsen E. T.: Copulas and Markov processes.Illinois J. Math. 36 (1992), 600–642 Zbl 0770.60019, MR 1215798
Reference: [9] Baets B. De, Mesiar R.: Discrete triangular norms.In: Topological and Algebraic Structures in Fuzzy Sets. A Handbook of Recent Developments in the Mathematics of Fuzzy Sets (S. E. Rodabaugh and E. P. Klement, eds.), Chapter 14, Kluwer Academic Publishers, Dordrecht 2003, pp. 389–400 Zbl 1037.03046, MR 2046749
Reference: [10] Fodor J. C., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [11] Genest C., Quesada-Molina J. J., Rodríguez-Lallena J. A., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193–205 Zbl 0935.62059, MR 1703371, 10.1006/jmva.1998.1809
Reference: [12] Ricci R. Ghiselli, Navara M.: Convexity conditions on t-norms and their additive generators.Fuzzy Sets and Systems 151 (2005), 353–361 MR 2124885
Reference: [13] Hilbert D.: Mathematical problems.Bull. Amer. Math. Soc. 8 (1901/02), 437–479 MR 1557926, 10.1090/S0002-9904-1902-00923-3
Reference: [14] Jenei S.: On Archimedean triangular norms.Fuzzy Sets and Systems 99 (1998), 179–186 Zbl 0938.03083, MR 1646173, 10.1016/S0165-0114(97)00021-3
Reference: [15] Karaçal F.: An answer to an open problem on triangular norms.Fuzzy Sets and Systems 155 (2005), 459–463 Zbl 1077.03512, MR 2181002
Reference: [16] Khrennikov A., Nánásiová O.: Representation theorem of observables on a quantum system.Preprint 2003 Zbl 1104.81020, MR 2241859
Reference: [17] Klement E. P., Mesiar, R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht 2000 Zbl 1087.20041, MR 1790096
Reference: [18] Klement E. P., Mesiar, R., Pap E.: Problems on triangular norms and related operators.Fuzzy Sets and Systems 145 (2004), 471–479 Zbl 1050.03019, MR 2075842
Reference: [19] Ling C. M.: Representation of associative functions.Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
Reference: [20] Mesiar R., Novák V.: Open problems from the 2nd International Conference on Fuzzy Sets Theory and Its Applications.Fuzzy Sets and Systems 81 (1996), 185–190 Zbl 0877.04003, MR 1392780
Reference: [21] Mesiarová A.: Continuous triangular subnorms.Fuzzy Sets and Systems 142 (2004), 75–83 Zbl 1043.03018, MR 2045344
Reference: [22] Mesiarová A.: A note on two open problems of Alsina, Frank and Schweizer.Aequationes Math. (to appear) Zbl 1101.39011, MR 2258805
Reference: [23] Moynihan R.: On $\tau _T$ semigroups of probability distribution functions II.Aequationes Math. 17 (1978), 19–40 Zbl 0386.22005, MR 0480843, 10.1007/BF01818536
Reference: [24] Nánásiová O.: On conditional probabilities on quantum logic.Internat. J. Theor. Phys. 25 (1987), 155–162
Reference: [25] Nánásiová O.: Map for simultaneous measurements for a quantum logic.Internat. J. Theor. Phys. 42 (2003), 1889–1903 Zbl 1053.81006, MR 2023910, 10.1023/A:1027384132753
Reference: [26] Nelsen R. B.: An Introduction to Copulas.(Lecture Notes in Statistics 139.) Springer, New York 1999 Zbl 1152.62030, MR 1653203, 10.1007/978-1-4757-3076-0
Reference: [27] Ouyang Y., Li J.: An answer to an open problem on triangular norms.Inform. Sci. 175 (2005), 78–84 Zbl 1077.03513, MR 2162505, 10.1016/j.ins.2004.10.011
Reference: [28] Sarkoci P.: Dominance is not transitive even on continuous triangular norms.Submitted for publication
Reference: [29] Schweizer B., Sklar A.: Statistical metric spaces.Pacific J. Math. 10 (1960), 313–334 Zbl 0096.33203, MR 0115153, 10.2140/pjm.1960.10.313
Reference: [30] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North–Holland, New York 1983 Zbl 0546.60010, MR 0790314
Reference: [31] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
Reference: [32] Sklar A.: Random variables, joint distribution functions, and copulas.Kybernetika 9 (1973), 449–460 Zbl 0292.60036, MR 0345164
Reference: [33] Riečanová Z.: Distributive atomic effect algebras.Demonstratio Math. 36 (2003), 247–259 MR 1984337
Reference: [34] Riečanová Z.: Modular atomic effect algebras and the existence of subadditive states.Kybernetika 40 (2004), 459–468 MR 2102364
Reference: [35] Riečanová Z.: Archimedean atomic effect algebras in which all sharp elements are central.Preprint
.

Files

Files Size Format View
Kybernetika_42-2006-2_7.pdf 818.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo