Previous |  Up |  Next

Article

Keywords:
lattice effect algebra; sharp and central element; block; state; subdirect decomposition; MacNeille completion
Summary:
We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.
References:
[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 MR 1861369
[3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352 DOI 10.1007/BF02283036 | MR 1304942
[4] Greechie R. J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10 (1971), 119–132 DOI 10.1016/0097-3165(71)90015-X | MR 0274355 | Zbl 0219.06007
[5] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra. Order 12 (1995), 91–106 DOI 10.1007/BF01108592 | MR 1336539 | Zbl 0846.03031
[6] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29
[7] Kôpka F., Chovanec F.: $D$-posets. Math. Slovaca 44 (1994), 21–34 MR 1290269 | Zbl 0789.03048
[8] Riečanová Z.: MacNeille completions of $D$-posets and effect algebras. Internat. J. Theor. Phys. 39 (2000), 859–869 DOI 10.1023/A:1003683014627 | MR 1792204 | Zbl 0967.06008
[9] Riečanová Z.: Generalization of blocks for $D$-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237 DOI 10.1023/A:1003619806024 | MR 1762594 | Zbl 0968.81003
[10] Riečanová Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452 MR 1791464
[11] Riečanová Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532 MR 1853730
[12] Riečanová Z.: Proper effect algebras admitting no states. Internat. J. Theor. Phys. 40 40 (2001), 1683–1691 DOI 10.1023/A:1011911512416 | MR 1858217 | Zbl 0989.81003
[13] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theor. Phys. 41 (2002), 1511–1524 DOI 10.1023/A:1020136531601 | MR 1932844
[14] Riečanová Z.: Continuous effect algebra admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 DOI 10.1016/S0165-0114(02)00141-0 | MR 1978468
[15] Riečanová Z.: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259 MR 1984337
[16] Riečanová Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theor. Phys. 42 (2003), 1425–1433 DOI 10.1023/A:1025775827938 | MR 2021221
[17] Riečanová Z.: Modular atomic effect algebras and the existence of subadditive states. Kybernetika 40 (2004), 459–468 MR 2102364
[18] Schmidt J.: Zur Kennzeichnung der Dedekind–MacNeilleschen Hulle einer geordneten Menge. Arch. Math. 17 (1956), 241–249 DOI 10.1007/BF01900297 | MR 0084484
Partner of
EuDML logo