[2] Beneš V., Jiruše, M., Slámová M.:
Stereological unfolding of the trivariate size-shape-orientation distribution of spheroidal particles with application. Acta Materialia 45 (1997), 1105–1197
DOI 10.1016/S1359-6454(96)00249-2
[4] Drees H., Reiss R.-D.:
Tail behavior in Wicksell’s corpuscle problem. In: Probability Theory and Applications (J. Galambos and J. Kátai, eds.), Kluwer, Dordrecht 1992, pp. 205–220
MR 1211909
[5] Embrechts P., Klüppelberg, C., Mikosch T.:
Modelling Extremal Events for Insurance and Finance. Springer–Verlag, Berlin 1997
MR 1458613 |
Zbl 0873.62116
[6] Haan L. de:
On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. (Mathematical Centre Tract 32.) Mathematisch Centrum Amsterdam, 1975
MR 0286156 |
Zbl 0226.60039
[8] Hlubinka D.:
Stereology of extremes; size of spheroids. Mathematica Bohemica 128 (2003), 419–438
MR 2032479 |
Zbl 1053.60053
[9] Ohser J., Mücklich F.:
Statistical Analysis of Microstructures in Materials Science. Wiley, New York 2000
Zbl 0960.62129
[11] Reiss R.-D., Thomas M.:
Statistical Analysis of Extreme Values. From Insurance, Finance, Hydrology and Other Fields. Second edition. Birkhäuser, Basel 2001
MR 1819648 |
Zbl 1122.62036
[13] Takahashi R., Sibuya M.:
The maximum size of the planar sections of random spheres and its application to metalurgy. Ann. Inst. Statist. Math. 48 (1996), 127–144
DOI 10.1007/BF00049294 |
MR 1392521
[17] Weissman I.:
Estimation of parameters and large quantiles based on the $k$ largest observations. J. Amer. Statist. Assoc. 73 (1978), 812–815
MR 0521329 |
Zbl 0397.62034