Previous |  Up |  Next

Article

Title: Geometrical characterization of observability in Interpreted Petri Nets (English)
Author: Rivera-Rangel, Israel
Author: Ramírez-Treviño, Antonio
Author: Aguirre-Salas, Luis I.
Author: Ruiz-León, Javier
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 5
Year: 2005
Pages: [553]-574
Summary lang: English
.
Category: math
.
Summary: This work is concerned with observability in Discrete Event Systems (DES) modeled by Interpreted Petri Nets (IPN). Three major contributions are presented. First, a novel geometric characterization of observability based on input-output equivalence relations on the marking sequences sets is presented. Later, to show that this characterization is well posed, it is applied to linear continuous systems, leading to classical characterizations of observability for continuous systems. Finally, this paper translates the geometric characte-rization of observability into structural properties of the IPN. Thus, polynomial algorithms can be derived to check the observability in a broad class of IPN. (English)
Keyword: discrete event systems
Keyword: observability
Keyword: Petri nets
MSC: 68Q85
MSC: 93B07
MSC: 93C65
idZBL: Zbl 1249.93126
idMR: MR2192423
.
Date available: 2009-09-24T20:11:27Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135678
.
Reference: [1] Aguirre-Salas L., Begovich, O., Ramírez-Treviño A.: Observability in interpreted Petri nets using sequence invariants.In: Proc. 41th IEEE Conference on Decision and Control, Hawai 2002, pp. 3602–3607
Reference: [2] Campos-Rodríguez R., Ramírez-Treviño, A., López-Mellado E.: Regulation control of partially observed discrete event systems.In: Proc. IEEE–SMC, The Hague 2004, pp. 1837–1842
Reference: [3] Chen C. T.: Linear System Theory and Design.Harcourt Brace Jovanovich Inc., New York 1970
Reference: [4] Cieslak R., Desclaux C., Fawaz, A., Varaiya P.: Supervisory control of discrete event processes with partial observation.IEEE Trans. Automat. Control 33 (1988), 249–260 10.1109/9.402
Reference: [5] Desel J., Esparza J.: Free Choice Petri Nets.Cambridge University Press, Cambridge 1995 Zbl 0836.68074, MR 1469221
Reference: [6] DiCesare F., Harhalakis G., Proth J. M., Silva, M., Vernadat F. B.: Practice of Petri Nets in Manufacturing.Chapman & Hall, London 1993
Reference: [7] Giua A.: Petri net state estimators based on event observation.In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997, pp. 4086–4091
Reference: [8] Giua A., Seatzu C.: Observability properties of Petri nets.In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2676–2681
Reference: [9] Hopcroft J. E., Ullman J. D.: Introduction to Automata Theory, Languages and Computation.Addison–Wesley, New York 1979 Zbl 0980.68066, MR 0645539
Reference: [10] Ichikawa A., Hiraishi K.: Analysis and Control of Discrete Event Systems Represented by Petri Nets.(Lecture Notes in Control and Inform. Sciences 103.) Springer, Berlin 1989, pp. 115–134 MR 0947968, 10.1007/BFb0042308
Reference: [11] Kumar R., Grag V. K., Marcus S. I.: On controllability and normality of discrete event dynamic systems.Systems Control Lett. 17 (1991), 157–168 MR 1125967, 10.1016/0167-6911(91)90061-I
Reference: [12] Kumar R., Grag V. K., Marcus S. I.: On supervisory control of sequential behaviors.IEEE Trans. Automat. Control 37 (1992), 1978–1985 MR 1200617, 10.1109/9.182487
Reference: [13] Kumar R., Shayman M. A.: Formulae relating controllability, observability and co-observability.Automatica 2 (1998), 211–215 Zbl 0911.93020, MR 1609815, 10.1016/S0005-1098(97)00164-7
Reference: [14] Li Y., Wonham W. M.: Controllability and observability in the state-feedback control of discrete event systems.In: Proc. 27th IEEE Conference on Decision and Control, Austin 1988, pp. 203–207
Reference: [15] Lin F., Wonham W. M.: Decentralized control and coordination of discrete-event systems with partial observation.IEEE Trans. Automat. Control 35 (1990), 1330–1337 Zbl 0723.93043, MR 1078145, 10.1109/9.61009
Reference: [16] Meda M. E., Ramírez-Treviño, A., Malo A.: Identification in discrete event systems.IEEE Internat. Conference SMC, San Diego 1998, pp. 740–745
Reference: [17] Murata T.: Petri nets: properties, analysis and applications.Proc. IEEE 77 (1989), 541–580
Reference: [18] Özveren C. M., Willsky A. S.: Observability of discrete event dynamic systems.IEEE Trans. Automat. Control 35 (1990), 797–806 Zbl 0709.68030, MR 1058364, 10.1109/9.57018
Reference: [19] Perko L.: Differential Equations and Dynamic Systems.(Texts in Applied Mathematics.) Springer, New York 1996 10.1007/978-1-4684-0249-0
Reference: [20] Ramadge P. J.: Observability of discrete event systems.In: Proc. 25th IEEE Conference on Decision and Control, Athens 1986, pp. 1108–1112
Reference: [21] Ramírez-Treviño A., Rivera-Rangel, I., López-Mellado E.: Observability of discrete event systems modeled by interpreted Petri nets.IEEE Trans. Robotics and Automation 19 (2003), 557–565 10.1109/TRA.2003.814503
Reference: [22] Rivera-Rangel I., Aguirre-Salas L., Ramírez-Treviño, A., López-Mellado E.: Observer design for discrete event systems modeled by interpreted Petri nets.In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2260–2265
Reference: [23] Ushio T.: On the existence of finite-state supervisors under partial observations.IEEE Trans. Automat. Control 42 (1997), 1577–1581 Zbl 0891.93006, MR 1479096, 10.1109/9.649723
Reference: [24] Wonham W. M.: Linear Multivariable Control.A Geometric Approach. Springer, New York 1985 Zbl 0609.93001, MR 0770574
.

Files

Files Size Format View
Kybernetika_41-2005-5_1.pdf 3.033Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo