Article
Keywords:
sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function
Summary:
Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2<\infty $, $E|\tilde{X}_1|^{k+2}<\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
References:
[1] Araujo A., Giné E.:
The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York 1980
MR 0576407 |
Zbl 0457.60001
[3] Bhattacharya R. N., Rao R. Ranga:
Normal Approximation and Asymptotic Expansions. Wiley, New York 1976
MR 0436272
[4] Dudley R. M.:
Uniform Central Limit Theorems. Cambridge University Press, Cambridge 1999
MR 1720712 |
Zbl 1139.60016
[6] Gordienko E. I., Chávez J. Ruiz de:
New estimates of continuity in $M|GI|1|\infty $ queues. Queueing Systems Theory Appl. 29 (1998), 175–188
MR 1654484
[8] Kalashnikov V.:
Geometric Sums: Bounds for Rare Events with Applications. Kluwer Academic Publishers, Dordrecht 1997
MR 1471479 |
Zbl 0881.60043
[9] Kalashnikov V., Konstantinidis D.:
The ruin probability. Fund. Appl. Math. 2 (1996), 1055–1100 (in Russian)
MR 1785772
[11] Senatov V. V.: Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem. Theory Probab. Appl. 25 (1980), 745–759
[12] Senatov V. V.:
Qualitative effects in estimates for the rate of convergence in the central limit theorem in multidimensional spaces. Proc. Steklov Inst. Math. 215 (1996), 4, 1–237
MR 1632100
[13] Zhukov, Yu. V.:
On the accuracy of normal approximation for the densities of sums of independent identically distributed random variables. Theory Probab. Appl. 44 (2000), 785–793
MR 1811136 |
Zbl 0967.60022