Previous |  Up |  Next

Article

Keywords:
fuzzy relation; reflexivity; symmetry; connectedness; $\star $-transitivity; transitivity; weak property; relation aggregation; mean; arithmetic mean; quasi-arithmetic mean; quasilinear mean; weighted average
Summary:
We consider aggregations of fuzzy relations using means in [0,1] (especially: minimum, maximum and quasilinear mean). After recalling fundamental properties of fuzzy relations we examine means, which preserve reflexivity, symmetry, connectedness and transitivity of fuzzy relations. Conversely, some properties of aggregated relations can be inferred from properties of aggregation results. Results of the paper are completed by suitable examples and counter- examples, which is summarized in a special table at the end of the paper.
References:
[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966 MR 0208210
[2] Birkhoff G.: Lattice Theory. (Colloq. Publ. 25.) American Mathematical Society, Providence, RI 1967 MR 0227053 | Zbl 0537.06001
[3] Bodenhofer U.: A Similarity-based Generalization of Fuzzy Orderings. Ph.D. Thesis, Universitätsverlag Rudolf Tranuer, Linz 1999 Zbl 1113.03333
[4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica–Verlag, Heildelberg 2002 MR 1936383 | Zbl 0983.00020
[5] Cauchy A. L.: Cours d‘analyse de l‘Ecole Royale Polytechnique, Vol. 1, Analyse Algébraique, Debure, Paris 1821
[6] Drewniak J.: Fuzzy Relation Calculus. Silesian University, Katowice 1989 MR 1009161 | Zbl 0701.04002
[7] Drewniak J.: Classes of fuzzy relations. In: Abstracts 12th Internat. Seminar Fuzzy Set Theory (E. P. Klement and L. I. Valverde, eds.), Linz 1990, pp. 36–38
[8] Drewniak J.: Equations in classes of fuzzy relations. Fuzzy Sets and Systems 75 (1995), 215–228 DOI 10.1016/0165-0114(95)00008-9 | MR 1358224 | Zbl 0856.04005
[9] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination. In: Abstracts FSTA 2004, Liptovský Ján 2004, pp. 43–44
[10] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations. In: Current Issues in Data and Knowledge Engineering (B. De Bayets et al., eds.), EXIT, Warszawa 2004, pp. 195–203
[11] Fodor J. C., Ovchinnikov S.: On aggregation of $T$-transitive fuzzy binary relations. Fuzzy Sets and Systems 72 (1995), 135–145 DOI 10.1016/0165-0114(94)00346-9 | MR 1335529 | Zbl 0845.90010
[12] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
[13] Goguen J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145–174 DOI 10.1016/0022-247X(67)90189-8 | MR 0224391 | Zbl 0145.24404
[14] Kolmogorov A. N.: Sur la notion de la moyenne. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930), 6, 388–391
[15] Leclerc B.: Aggregation of fuzzy preferences: A theoretic Arrow-like approach. Fuzzy Sets and Systems 43 (1991), 291–309 DOI 10.1016/0165-0114(91)90256-P | MR 1137280 | Zbl 0747.90005
[16] Ovchinnikov S.: Social choice and Lukasiewicz logic. Fuzzy Sets and Systems 43 (1991), 275–289 DOI 10.1016/0165-0114(91)90255-O | MR 1137279 | Zbl 0742.90010
[17] Ovchinnikov S.: Aggregating transitive fuzzy binary relations. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 3 (1995), 47–55 DOI 10.1142/S0218488595000062 | MR 1321937 | Zbl 1232.03043
[18] Peneva V., Popchev I.: Aggregation of fuzzy relations. C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 MR 1727541
[19] Peneva V., Popchev I.: Aggregation of fuzzy relations in multicriteria decision making. C. R. Acad. Bulgare Sci. 54 (2001), 4, 47–52 MR 1727541
[20] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets and Systems 139 (2003), 3, 615–633 MR 2015157 | Zbl 1054.91021
[21] Roubens M., Vincke P.: Preference Modelling. Springer–Verlag, Berlin 1985 MR 0809182 | Zbl 0612.92020
[22] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), Suppl., 11–35 DOI 10.1142/S0218488502001806 | MR 1962666 | Zbl 1053.03514
[23] Schreider, Ju. A.: Equality, Resemblance, and Order. Mir Publishers, Moscow 1975 MR 0389600
[24] Wang X.: An investigation into relations between some transitivity-related concepts. Fuzzy Sets and Systems 89 (1997), 257–262 DOI 10.1016/S0165-0114(96)00104-2 | MR 1456051 | Zbl 0917.90025
[25] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
[26] Zadeh L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200 DOI 10.1016/S0020-0255(71)80005-1 | MR 0297650 | Zbl 0218.02058
Partner of
EuDML logo