[1] Babuška R.: Construction of fuzzy systems – interplay between precision and transparency. In: Proc. Europ. Symp. on Intelligent Techniques, Aachen 2000, pp. 445–452
[2] Bikdash M.:
A highly interpretable form of Sugeno inference systems. IEEE Trans. Fuzzy Systems 7 (1999), 686–696
DOI 10.1109/91.811237
[3] Bodenhofer U.: The construction of ordering-based modifiers. In: Fuzzy-Neuro Systems ’99 (G. Brewka, R. Der, S. Gottwald and A. Schierwagen, eds.), Leipziger Universitätsverlag 1999, pp. 55–62
[4] Bodenhofer U.:
A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C26.) Universitätsverlag Rudolf Trauner, Linz 1999
Zbl 1113.03333
[5] Bodenhofer U.:
A general framework for ordering fuzzy sets. In: Technologies for Constructing Intelligent Systems 1: Tasks, (B. Bouchon-Meunier, J. Guitiérrez-Ríoz, L. Magdalena, and R. R. Yager, eds., Studies in Fuzziness and Soft Computing 89), Physica–Verlag, Heidelberg 2002, pp. 213–224
Zbl 1009.68150
[6] Bodenhofer U., Bauer P.: Towards an axiomatic treatment of “interpretability”. In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 334–339
[7] Bodenhofer U., Bauer P.:
A formal model of interpretability of linguistic variables. In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds.), Studies in Fuzziness and Soft Computing 128), Springer, Berlin 2003, pp. 524–545
Zbl 1038.93050
[9] Bodenhofer U., Klement E. P.:
Genetic optimization of fuzzy classification systems – a case study. In: Computational Intelligence in Theory and Practice (B. Reusch and K.-H. Temme, eds., Advances in Soft Computing), Physica–Verlag, Heidelberg 2001, pp. 183–200
Zbl 1002.68148
[10] Casillas J., Cordón O., Herrera, F., Magdalena L.: Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview. In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds., Studies in Fuzziness and Soft Computing 128), Springer–Verlag, Berlin 2003, pp. 3–24
[11] Casillas J., Cordón O., Herrera, F., (eds.) L. Magdalena: Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing 128). Springer–Verlag, Berlin 2003
[12] Cordón O., Herrera F.:
A proposal for improving the accuracy of linguistic modeling. IEEE Trans. Fuzzy Systems 8 (2000), 335–344
DOI 10.1109/91.855921
[13] Baets B. De:
Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds., The Handbooks of Fuzzy Sets 7), Kluwer Academic Publishers, Boston 2000, pp. 291–340
MR 1890236 |
Zbl 0970.03044
[15] Cock M. De, Bodenhofer, U., Kerre E. E.: Modelling linguistic expressions using fuzzy relations. In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 353–360
[16] Drobics M., Bodenhofer U.: Fuzzy modeling with decision trees. In: Proc. 2002 IEEE Inernat. Conference on Systems, Man and Cybernetics, Hammamet 2002
[19] Dubois D., Prade, H., Ughetto L.:
Checking the coherence and redundancy of fuzzy knowledge bases. IEEE Trans. Fuzzy Systems 5 (1997), 398–417
DOI 10.1109/91.618276
[20] Dubois D., Prade, H., Ughetto L.:
Fuzzy logic, control engineering and artificial intelligence. In: Fuzzy Algorithms for Control (H. B. Verbruggen, H.-J. Zimmermann, and R. Babuška, eds., International Series in Intelligent Technologies), Kluwer Academic Publishers, Boston 1999, pp. 17–57
MR 1796620
[21] Espinosa J., Vandewalle J.:
Constructing fuzzy models with linguistic integrity from numerical data – AFRELI algorithm. IEEE Trans. Fuzzy Systems 8 (2000), 591–600
DOI 10.1109/91.873582
[22] Fodor J., Roubens M.:
Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
Zbl 0827.90002
[23] Geyer–Schulz A.:
Fuzzy Rule-based Expert Systems and Genetic Machine Learning. (Studies in Fuzziness 3.) Physica–Verlag, Heidelberg 1995
Zbl 0914.68166
[24] Geyer–Schulz A.: The MIT beer distribution game revisited: Genetic machine learning and managerial behavior in a dynamic decision making experiment. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Studies in Fuzziness and Soft Computing 8, Physica–Verlag, Heidelberg 1996, pp. 658–682
[26] Haslinger J., Bodenhofer, U., Burger M.: Data-driven construction of Sugeno controllers: Analytical aspects and new numerical methods. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conference, Vancouver 2001, pp. 239–244
[27] Kerre E. E., Mareš, M., Mesiar R.: On the orderings of generated fuzzy quantities. In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, Paris 1998, pp. 250–253
[28] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms (Trends in Logic 8). Kluwer Academic Publishers, Dordrecht 2000
MR 1790096
[30] Kruse R., Gebhardt, J., Klawonn F.:
Foundations of Fuzzy Systems. Wiley, New York 1994
Zbl 0843.68109
[32] Michalski R. S., Bratko, I., Kubat M.: Machine Learning and Data Mining. Wiley, Chichester 1998
[33] Muggleton S., Raedt L. De:
Inductive logic programming: Theory and methods. J. Logic Program. 19/20 (1994), 629–680
MR 1279936 |
Zbl 0816.68043
[34] Pedrycz W., Sosnowski Z. A.:
Designing decision trees with the use of fuzzy granulation. IEEE Trans. Systems Man Cybernet. A 30 (2000), 151–159
DOI 10.1109/3468.833095
[36] Quinlan J. R.:
Learning logical definitions from relations. Mach. Learning 5 (1990), 239–266
DOI 10.1007/BF00117105
[37] Ralston A., Reilly E. D., (eds.) D. Hemmendinger:
Encyclopedia of Computer Science. Fourth edition. Groves Dictionaries, Williston 2000
Zbl 0954.68002
[39] Setnes M., Babuška, R., Verbruggen H. B.:
Rule-based modeling: Precision and transparency. IEEE Trans. Systems Man Cybernet. C 28 (1998), 165–169
DOI 10.1109/5326.661100
[40] Setnes M., Roubos H.:
GA-fuzzy modeling and classification: Complexity and performance. IEEE Trans. Fuzzy Systems 8 (2000), 509–522
DOI 10.1109/91.873575
[41] Yen J., Wang, L., Gillespie C. W.:
Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Systems 6 (1998), 530–537
DOI 10.1109/91.728447
[43] Zadeh L. A.:
The concept of a linguistic variable and its application to approximate reasoning I. Inform. Sci. 8 (1975), 199–250
MR 0386369 |
Zbl 0397.68071