[1] Aumann R. J., Shapley L. S.:
Values of Non-Atomic Games. Princeton University Press, Princeton 1974
MR 0378865 |
Zbl 0311.90084
[2] Bronevich A. G.: Aggregation operators of fuzzy measures. Properties of inheritance, submitted
[3] Bronevich A. G., Lepskiy A. E.:
Operators for Convolution of Fuzzy Measures. In: Soft Methods in Probability, Statistics and Data Analysis, Advances in Soft Computing, Physica–Verlag, Heidelberg 2002, pp. 84–91
MR 1987678
[4] Denneberg D.:
Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994
MR 1320048 |
Zbl 0968.28009
[6] Dzjadyk V. K.: Vvedenie v teoriju ravnomernogo približenia funkcij polinomami. Nauka, Moskva 1977
[7] Pap E.:
Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 1995
MR 1368630 |
Zbl 1003.28012
[8] (ed.) E. Pap: Handbook on Measure Theory. Elsevier, Amsterdam 2002
[9] Struk P., Valášková Ĺ.:
Preservation of distinguished fuzzy measure classes by distortion. In: Uncertainty Modelling 2003, Publishing House of STU, Bratislava 2003, pp. 48–51
Zbl 1109.28303
[10] Stupňanová A., Struk P.: Pessimistic and optimistic fuzzy measures on finite sets. In: MaGiA 2003, Publishing House of STU, Bratislava 2003, pp. 94–100