Previous |  Up |  Next

Article

Keywords:
polynomial matrix; second-order linear systems; LMI; pole placement; robust control
Summary:
Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.
References:
[1] Ackermann J.: Robust Control. Systems with Uncertain Physical Parameters. Springer Verlag, Berlin 1993 MR 1266389 | Zbl 1054.93019
[2] Barb F. D., Ben-Tal, A., Nemirovski A.: Robust dissipativity of interval uncertain systems. SIAM J. Control Optim. 41 (2002), 6, 1661–1695 DOI 10.1137/S0363012901398174
[3] Bernussou J., Peres P. L. D., Geromel J. C.: A linear programming oriented procedure for quadratic stabilization of uncertain systems. Systems Control Lett. 13 (1989) 65–72 DOI 10.1016/0167-6911(89)90022-4 | MR 1006849 | Zbl 0678.93042
[4] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania 1994 MR 1284712 | Zbl 0816.93004
[5] Chilali M., Gahinet P.: $H_{\infty }$ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Control 41 (1996), 3, 358–367 DOI 10.1109/9.486637 | MR 1382985
[6] Chu E. K., Datta B. N.: Numerically robust pole assignment for second-order systems. Internat. J. Control 64 (1996), 1113–1127 DOI 10.1080/00207179608921677 | MR 1664806 | Zbl 0850.93318
[7] Datta B. N., Elhay, S., Ram Y. M.: Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Algebra Appl. 257 (1997), 29–48, 1997 MR 1441702 | Zbl 0876.15009
[8] Diwekar A. M., Yedavalli R. K.: Stability of matrix second-order systems: new conditions and perspectives. IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 DOI 10.1109/9.788551 | MR 1710122 | Zbl 0958.93081
[9] Duan G. R., Liu G. P.: Complete parametric approach for eigenstructure assignment in a class of second-order linear systems. Automatica 38 (2002), 4, 725–729 DOI 10.1016/S0005-1098(01)00251-5 | MR 2131479 | Zbl 1009.93036
[10] Ghaoui L. El, Oustry, F., Lebret H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1998), 1, 33–52 DOI 10.1137/S1052623496305717 | MR 1660106 | Zbl 0960.93007
[11] Genin Y., Nesterov, Y., Dooren P. Van: Optimization over Positive Polynomial Matrices. In: Proc. Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
[12] Henrion D., Arzelier, D., Peaucelle D.: Positive polynomial matrices and improved LMI robustness conditions. Automatica 39 (2003), 8, 1479–1485 MR 2142253 | Zbl 1037.93027
[13] Henrion D., Arzelier D., Peaucelle, D., Šebek M.: An LMI condition for robust stability of polynomial matrix polytopes. Automatica 37 (2001), 3, 461–468 DOI 10.1016/S0005-1098(00)00170-9 | MR 1843990 | Zbl 0982.93057
[14] Henrion D., Bachelier, O., Šebek M.: D-stability of polynomial matrices. Internat. J. Control 74 (2001), 8, 845–856 MR 1832952 | Zbl 1011.93083
[15] Inman D. J., Kress A.: Eigenstructure assignment using inverse eigenvalue methods. AIAA J. Guidance, Control and Dynamics 18 (1995), 3, 625–627 DOI 10.2514/3.21433
[16] Nichols N. K., Kautsky J.: Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case. SIAM J. Matrix Analysis Appl. 23 (2001), 1, 77–102 DOI 10.1137/S0895479899362867 | MR 1856600 | Zbl 0995.65069
[17] Oliveira M. C. de, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 261–265 DOI 10.1016/S0167-6911(99)00035-3 | MR 1751256 | Zbl 0948.93058
[18] Peaucelle D., Arzelier D., Bachelier, O., Bernussou J.: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 21–30 DOI 10.1016/S0167-6911(99)00119-X | MR 1829071 | Zbl 0977.93067
[19] Peaucelle D., Henrion, D., Labit Y.: SeDuMi Interface: A user-friendly free Matlab package for defining LMI problems. In: Proc. IEEE Conference on Computer-Aided Control System Design, Glasgow 2002
[21] Skelton R. E., Iwasaki, T., Grigoriadis K.: A Unified Algebraic Approach to Linear Control Design. Taylor and Francis, London 1998 MR 1484416
[23] Tisseur F., Higham N. J.: Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Analysis Appl. 23 (2001), 1, 187–208 DOI 10.1137/S0895479800371451 | MR 1856605 | Zbl 0996.65042
[24] Tisseur F., Meerbergen K.: The quadratic eigenvalue problem. SIAM Rev. 43 (2001), 2, 235–286 DOI 10.1137/S0036144500381988 | MR 1861082 | Zbl 0985.65028
Partner of
EuDML logo