Previous |  Up |  Next

Article

Keywords:
approximation; Dirichlet distribution; Gauss hypergeometric function
Summary:
It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.
References:
[1] Chapman D. G.: Some two-sample tests. Ann. Math. Statist. 21 (1950), 601–606 DOI 10.1214/aoms/1177729755 | MR 0043423 | Zbl 0040.36602
[2] Chaubey Y. P., Talukder A. B. M., Enayet, Nur: Exact moments of a ratio of two positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12 (1983), 675–679 DOI 10.1080/03610928308828487 | MR 0696814 | Zbl 0513.62019
[3] Dobson A. J., Kulasmaa, K., Scherer J.: Confidence intervals for weighted sums of Poisson parameters. Statist. Medicine 10 (1991), 457–462 DOI 10.1002/sim.4780100317
[4] Fan D.-Y.: The distribution of the product of independent beta variables. Comm. Statist. – Theory Methods 20 (1991), 4043–4052 DOI 10.1080/03610929108830755 | MR 1158562
[5] Gradshteyn I. S., Ryzhik I. M.: Table of Integrals, Series, and Products. Sixth edition. Academic Press, San Diego 2000 MR 1773820 | Zbl 1208.65001
[6] Grice J. V., Bain L. J.: Inferences concerning the mean of the gamma distribution. J. Amer. Statist. Assoc. 75 (1980), 929–933 DOI 10.1080/01621459.1980.10477574 | MR 0600978 | Zbl 0448.62013
[7] Gupta A. K., Nadarajah S.: Handbook of Beta Distribution and Its Applications. Marcel Dekker, New York 2004 MR 2079703 | Zbl 1062.62021
[8] Jackson O. A. Y.: Fitting a gamma or log-normal distribution to fibre-diameter measurements on wool tops. Appl. Statist. 18 (1969), 70–75 DOI 10.2307/2346441
[9] Johannesson N., Giri N.: On approximations involving the beta distribution. Comm. Statist. – Simulation Computation 24 (1995), 489–503 DOI 10.1080/03610919508813253 | MR 1333048 | Zbl 0850.62187
[10] Kamgar-Parsi B., Kamgar-Parsi, B., Brosh M.: Distribution and moments of weighted sum of uniform random variables with applications in reducing Monte Carlo simulations. J. Statist. Comput. Simulation 52 (1995), 399–414 DOI 10.1080/00949659508811688
[11] Kimball C. V., Scheibner D. J.: Error bars for sonic slowness measurements. Geophysics 63 (1998), 345–353 DOI 10.1190/1.1444334
[12] Kotz S., Balakrishnan, N., Johnson N. L.: Continuous Multivariate Distributions. Volume 1: Models and Applications. Second edition. Wiley, New York 2000 MR 1788152 | Zbl 0946.62001
[13] Lai T. L.: Control charts based on weighted sums. Ann. Statist. 2 (1974), 134–147 DOI 10.1214/aos/1176342619 | MR 0353604 | Zbl 0288.62043
[14] Linhart H.: Approximate confidence limits for the coefficient of variation of gamma distributions. Biometrics 21 (1965), 733–738 DOI 10.2307/2528554 | MR 0183053
[15] Lowan A. N., Laderman J.: On the distribution of errors in $n$th tabular differences. Ann. Math. Statist. 10 (1939), 360–364 DOI 10.1214/aoms/1177732147 | MR 0000759 | Zbl 0024.05601
[16] Malik H. J.: The distribution of the product of two noncentral beta variates. Naval Res. Logist. Quart. 17 (1970), 327–330 DOI 10.1002/nav.3800170309 | Zbl 0225.62017
[17] Mikhail N. N., Tracy D. S.: The exact non-null distribution of Wilk’s $\Lambda $ criterion in the bivariate collinear case. Canad. Math. Bull. 17 (1975), 757–758 DOI 10.4153/CMB-1974-136-0 | MR 0386155
[18] Monti K. L., Sen P. K.: The locally optimal combination of independent test statistics. J. Amer. Statist. Assoc. 71 (1976), 903–911 DOI 10.1080/01621459.1976.10480967 | MR 0426266
[19] Pham-Gia T.: Distributions of the ratios of independent beta variables and applications. Comm. Statist. – Theory Methods 29 (2000), 2693–2715 DOI 10.1080/03610920008832632 | MR 1804259 | Zbl 1107.62309
[20] Pham-Gia T., Turkkan N.: Bayesian analysis of the difference of two proportions. Comm. Statist. – Theory Methods 22 (1993), 1755–1771 DOI 10.1080/03610929308831114 | MR 1224989 | Zbl 0784.62024
[21] Pham-Gia T., Turkkan N.: Reliability of a standby system with beta component lifelength. IEEE Trans. Reliability (1994), 71–75 DOI 10.1109/24.285114
[22] Pham-Gia, T., Turkkan N.: Distribution of the linear combination of two general beta variables and applications. Comm. Statist. – Theory Methods 27 (1998), 1851–1869 DOI 10.1080/03610929808832194 | MR 1647792 | Zbl 0926.62008
[23] Pham-Gia T., Turkkan N.: The product and quotient of general beta distributions. Statist. Papers 43 (2002) , 537–550 DOI 10.1007/s00362-002-0122-y | MR 1932772 | Zbl 1008.62016
[24] Provost S. B., Cheong Y.-H.: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000), 417–425 DOI 10.2307/3315988 | MR 1792058 | Zbl 0986.62037
[25] Provost S. B., Rudiuk E. M.: The exact density function of the ratio of two dependent linear combinations of chi-square variables. Ann. Inst. Statist. Math. 46 (1994), 557–571 MR 1309724 | Zbl 0817.62005
[26] Prudnikov A. P., Brychkov Y. A., Marichev O. I.: Integrals and Series. Volumes 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam 1986 Zbl 1103.33300
[27] Rousseau B., Ennis D. M.: A Thurstonian model for the dual pair (4IAX) discrimination method. Perception & Psychophysics 63 (2001), 1083–1090 DOI 10.3758/BF03194526
[28] Sculli D., Wong K. L.: The maximum and sum of two beta variables in the analysis of PERT networks. Omega Internat. J. Manag. Sci. 13 (1985), 233–240 DOI 10.1016/0305-0483(85)90061-1
[29] Stein C.: A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Statist. 16 (1945), 243–258 DOI 10.1214/aoms/1177731088 | MR 0013885 | Zbl 0060.30403
[30] Toyoda T., Ohtani K.: Testing equality between sets of coefficients after a preliminary test for equality of disturbance variances in two linear regressions. J. Econometrics 31 (1986), 67–80 DOI 10.1016/0304-4076(86)90056-4 | MR 0838853
[31] Neumann J. von: Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist. 12 (1941), 367–395 DOI 10.1214/aoms/1177731677 | MR 0006656
[32] Witkovský V.: Computing the distribution of a linear combination of inverted gamma variables. Kybernetika 37 (2001), 79–90 MR 1825758
[33] Yatchew A. J.: Multivariate distributions involving ratios of normal variables. Comm. Statist. – Theory Methods 15 (1986), 1905–1926 DOI 10.1080/03610928608829226 | MR 0848171 | Zbl 0605.62054
Partner of
EuDML logo