Previous |  Up |  Next

Article

Keywords:
hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems
Summary:
In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^{\infty }_{{\rm loc}}({R}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
References:
[1] Aizicovici S., Mckibben M., Reich S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal. 43 (2001), 233–251 DOI 10.1016/S0362-546X(99)00192-3 | MR 1790104 | Zbl 0977.34061
[2] Aizicovici S., Pavel N. H.: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J. Funct. Anal. 99 (1991), 387–408 DOI 10.1016/0022-1236(91)90046-8 | MR 1121619 | Zbl 0743.34067
[3] Aizicovici S., Reich S.: Anti-periodic solutions to a class of non-monotone evolution equations. Discrete Contin. Dynam. Systems. 5 (1999), 35–42 MR 1664469 | Zbl 0961.34044
[4] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spacess. Noordhoff, Leyden 1976 MR 0390843
[5] Miettinen M.: A parabolic hemivariational inequality. Nonlinear Anal. 26 (1996), 725–734 DOI 10.1016/0362-546X(94)00312-6 | MR 1362746 | Zbl 0858.35072
[6] Miettinen M., Panagiotopoulos P. D.: On parabolic hemivariational inequalities and applications. Nonlinear Anal. 35 (1999), 885–915 MR 1664899 | Zbl 0923.35089
[7] Nakao M.: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204 (1996), 754–764 DOI 10.1006/jmaa.1996.0465 | MR 1422770 | Zbl 0873.35051
[8] Nakao M., Okochi H.: Anti-periodic solutions for $u_{tt}-(\sigma (u_x))_x-u_{xxt}=f(x,t)$. J. Math. Anal. Appl. 197 (1996), 796–809 MR 1373081
[9] Okochi H.: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541–553 DOI 10.2969/jmsj/04030541 | MR 0945351 | Zbl 0679.35046
[10] Panatiotopoulos P. D.: Nonconvex superpotentials in the sense of F. H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340 MR 0639382
[11] Rauch J.: Discontinuous semilinear differential equations and multiple valued maps. Proc. Amer. Math. Soc. 64 (1977), 277–282 DOI 10.1090/S0002-9939-1977-0442453-6 | MR 0442453 | Zbl 0413.35031
[12] Showalter R. E.: Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys Monographs 49 (1996) MR 1422252
Partner of
EuDML logo