Previous |  Up |  Next

Article

Keywords:
nearness relation; pseudo-arithmetic mean; geometric mean; nearness-convergence; continuous t-norm
Summary:
In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.
References:
[1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators, New Trends and Applications, Springer-Verlag, Heidelberg – New York 2002, pp. 3–104 MR 1936383 | Zbl 1039.03015
[2] Dobrakovová J.: Nearness, convergence and topology. Busefal 80 (1999), 17–23
[3] Dobrakovová J.: Nearness based topology. Tatra Mount. Math. Publ. 21 (2001), 163–170 MR 1904907 | Zbl 0993.54006
[4] Janiš V.: Fixed points of fuzzy functions. Tatra Mount. Math. Publ. 12 (1997), 13–19 MR 1607143 | Zbl 0946.54036
[5] Janiš V.: Nearness derivatives and fuzzy differentiability. Fuzzy Sets and Systems 108 (1999), 99–102 MR 1714660 | Zbl 0934.26013
[6] Kalina M.: Derivatives of fuzzy functions and fuzzy derivatives. Tatra Mount. Math. Publ. 12 (1997), 27–34 MR 1607135 | Zbl 0951.26015
[7] Kalina M.: Fuzzy smoothness and sequences of fuzzy smooth functions. Fuzzy Sets and Systems 105 (1999), 233–239 MR 1695578 | Zbl 0955.26011
[8] Kalina M., Dobrakovová J.: Relation of fuzzy nearness in Banach space. In: Proc. East-West Fuzzy Colloquium, Zittau 2002, pp. 26–32
[9] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–13 MR 1685803 | Zbl 0953.26008
[10] Klement E. P., Mesiar, R., Pap E.: Triangular norms. Trends in Logic, Studia Logica Library 8, Kluwer 2000 MR 1790096 | Zbl 1087.20041
[11] Kolesárová A.: On the comparision of quasi-arithmetic means. Busefal 80 (1999), 30–34
[12] Mesiar R., Komorníková M.: Aggregation operators. In: Proc. PRIM’96, XI Conference on Applied Mathematics 1996, pp. 193-211
[13] Micháliková–Rückschlossová T.: Some constructions of aggregation operators. J. Electrical Engrg. 12 (2000), 29–32 Zbl 0973.26018
[14] Viceník P.: Noncontinuous Additive Generators of Triangular Norms (in Slovak). Ph. D. Thesis. STU Bratislava 2002
Partner of
EuDML logo