Previous |  Up |  Next

Article

Keywords:
Bayesian networks; adaptive testing; heuristic search
Summary:
We propose a framework for building decision strategies using Bayesian network models and discuss its application to adaptive testing. Dynamic programming and $AO^{\star }$ algorithm are used to find optimal adaptive tests. The proposed $AO^{\star }$ algorithm is based on a new admissible heuristic function.
References:
[1] Almond R. G., Mislevy R. J.: Graphical models and computerized adaptive testing. Appl. Psychological Measurement 23 (1999), 3, 223–237 DOI 10.1177/01466219922031347
[2] Andreassen S., Jensen F. V., Andersen S. K., Falck B.: V. Kjærulff, M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen: MUNIN - An expert EMG assistant. In: Computer-Aided Electromyography and Expert Systems (J. E. Desmedt, ed.), Elsevier Science Publishers, Amsterdam 1989
[3] Ben-Bassat M.: Myopic policies in sequential classification. Trans. Comput. 27 (1978), 2, 170–174 DOI 10.1109/TC.1978.1675054 | MR 0521223
[4] Conati C., Gertner A. S., VanLehn, K., Druzdzel M. J.: On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks. In: Proc. Sixth Internat. Conference on User Modeling (UM97) (A. Jameson, C. Paris, and C. Tasso, eds.), Chia Laguna, Sardinia, Italy, 1997
[5] Millán E., Pérez-de-la-Cruz J. L.: A Bayesian Diagnostic Algorithm for Student Modeling and its Evaluation. User Modeling and User Adapted Interaction 12 (2002), 2–3, 281–330 Zbl 1030.68781
[6] Būtėnas L., Brilingaitė A., Čivilis A., Yin, X., Zokaitė N.: Computerized Adaptive Test Based on Bayesian Network for Basic Operations with Fractions. Student Project Report, Aalborg University, 2001, http://www.cs.auc.dk/library
[7] Greiner R., Grove A. J., Roth D.: Learning cost-sensitive active classifiers. Artificial Intelligence 130 (2002), 2, 137–174 DOI 10.1016/S0004-3702(02)00209-6 | MR 1930605
[8] Heckerman D., Horwitz, E., Nathwani B.: Towards normative expert systems: Part I, the Pathfinder project. Methods Inform. Medicine 31 (1992), 90–105
[9] Explorer, Hugin, 2002, ver. 6.0. Comput. Software, http//: www. hugin.com
[10] Jensen F. V.: Bayesian Networks and Decision Graphs. Springer–Verlag, New York – Berlin – Heidelberg 2001 MR 1876880
[11] Jensen F. V., Lauritzen S. L., Olesen K. G.: Bayesian updating in recursive graphical models by local computation. Comput. Statist. Quarterly 4 (1990), 269–282 MR 1073446
[12] Lauritzen S. L.: The EM-algorithm for graphical association models with missing data. Comput. Statist. Data Anal. 1 (1995), 191–201 DOI 10.1016/0167-9473(93)E0056-A | Zbl 0875.62237
[13] Lauritzen S. L., Spiegelhalter D. J.: Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. Roy. Statist. Soc. Ser. B 50 (1988), 157–224 MR 0964177
[14] Lauritzen S. L.: Some Modern Applications of Graphical Models. In: Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort, and S. Richardson, eds.), Oxford University Press, Oxford 2002 MR 2082405
[15] Lord F. M.: A Theory of Test Scores. Psychometrica Monograph No. 7 (1952)
[16] Pattipati K. R., Alexandridis M. G.: Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. Systems Man Cybernet. 20 (1990), 4, 872–887 DOI 10.1109/21.105086 | Zbl 0709.68006
[17] Pearl J.: Reverend Bayes on inference engines: a distributed hierarchical approach. In: Proc. AAAI National Conference on AI, Pittsburgh 1982, pp. 133–136
[18] Pearl J.: Heuristics – Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading, MA 1984
[19] Pearl J.: Fusion, propagation and structuring in belief networks. Artificial Intelligence 29 (1986), 3, 241–288 DOI 10.1016/0004-3702(86)90072-X | MR 0858200 | Zbl 0624.68081
[20] Rasch G.: Probabilistic Models for Some Intelligence and Attainment Tests. Technical Report, Danish Institute for Educational Research, Copenhagen 1960
[21] Spiegelhalter D. J., Knill-Jones R. P.: Statistical and knowledge-based approaches to clinical decision-support systems. J. Roy. Statist. Soc. Ser. A 147 (1984), 35–77 DOI 10.2307/2981737 | Zbl 0559.62089
[22] Spirtes P., Glymour, C., Scheines R.: Causation, Prediction, and Search (Lecture Notes in Statistics 81). Springer–Verlag, Berlin 1993 DOI 10.1007/978-1-4612-2748-9_7 | MR 1227558
[23] Linden W. J. Van Der, Glas C. A. W.: Computerized Adaptive Testing: Theory and Practice. Kluwer, Dordrecht 2000
[24] Vomlel J.: Bayesian networks in educational testing. Internat. J. Uncertainty, Fuzziness and Knowledge Based Systems 12 (2004), Supplementary Issue 1, 83–100 DOI 10.1142/S021848850400259X | Zbl 1101.68847
[25] Vomlelová M., Vomlel J.: Troubleshooting: NP-hardness and solution methods. Soft Comput. J. 7 (2003), 5, 357–368 DOI 10.1007/s00500-002-0224-4 | Zbl 1088.68804
[26] Wainer H., Thissen, D., Mislevy R. J.: Computerized Adaptive Testing: A Primer. Second edition. Mahwah, Lawrence Erlbaum Associates, N. J. 2000
Partner of
EuDML logo