[1] Agrawal R., Srikant R.: Fast algorithms for mining association rules. In: Proc. 20th Internat. Conference Very Large Data Bases, VLDB, Morgan Kaufmann, xxxxxxx 1994 pp. 487–499
[2] Alphonse E., Rouveirol C.: Lazy propositionalization for relational learning. In: Proc. 14th European Conference on Artificial Intelligence (ECAI’2000) (W. Horn, ed.), IOS Press 2000, pp. 256–260
[3] Blatǎk J., Popelínský L.: Feature construction with RAP. In: Proc. of the Work-in-Progress Track at the 13th Internat. Conference on Inductive Logic Programming. University of Szeged 2003
[4] Clark P., Niblett T.:
The cn2 induction algorithm. Mach. Learning 3 (1989), 261–283
DOI 10.1007/BF00116835
[5] Džeroski S.: Numerical constraints and learnability in inductive logic programming. Ph.D. Thesis. Faculty of Electrical Engineering and Computer Science, University of Ljubljana 1995
[6] Džeroski S., (eds.) N. Lavrač:
Relational Data Mining. Springer–Verlag, Berlin 2001
Zbl 1003.68039
[7] Emde W., Wettschereck D.: Relational instance based learning. In: Machine Learning – Proc. 13th Internat. Conference on Machine Learning, Morgan Kaufmann, xxxxxxx 1996, pp. 122–130
[8] Hájek P.:
Mechanizing Hypothesis Formation. Springer–Verlag, Berlin 1966
Zbl 0371.02002
[9] Kietz J. U.:
Some lower bounds for the computational complexity of inductive logic programming. In: Machine Learning: ECML-93, Proceedings of the European Conference on Machine Learning, volume 667, Springer–Verlag, Berlin 1993, pp. 115–123
MR 1235394
[10] Knobbe A. J., Haas, M. de, Siebes A.:
Propositionalisation and aggregates. In: Proc. Fifth European Conference on Principles of Data Mining and Knowledge Disovery (PKDD). Springer–Verlag, Berlin 2001
Zbl 1009.68749
[11] Kramer S., Lavrač, N., Flach P. A.: Propositionalization Approaches to relational data mining. In: Relational Data Mining (N. Lavrač and S. Džeroski, eds.), Springer–Verlag, Berlin 2001
[12] Krogel M. A., Rawles S., Železný F., Flach P. A., Lavrač, N., Wrobel S.: Comparative evaluation of approaches to propositionalization. In: Proc. 13th Internat. Conference on Inductive Logic Programming. Springer–Verlag, Berlin 2003
[13] Krogel M. A., Wrobel S.:
Transformation-based learning using multirelational aggregation. In: Proc. 11th Internat. Conference on Inductive Logic Programming (ILP), Springer–Verlag, Berlin 2001, pp. 142–155
Zbl 1006.68519
[14] Lavrač N., Flach P. A.:
An extended transformation approach to inductive logic programming. ACM Trans. Comput. Logic 2 (2001), 4, 458–494
DOI 10.1145/383779.383781
[15] Lavrač N., Džeroski S.:
Inductive Logic Programming: Techniques and Applications. Ellis Horwood, 1993
Zbl 0830.68027
[16] Lavrač N., Železný, F., Flach P. A.:
RSD: Relational subgroup discovery through first-order feature construction. In: Proc. 12th Internat. Conference on Inductive Logic Programming (ILP). Springer–Verlag, Berlin 2002
Zbl 1017.68523
[17] Liu H., Motoda H.:
Feature Selection for Knowledge Discovery and Data Mining. Kluwer, Dordrecht 1998
Zbl 0908.68127
[18] Maloberti J., Sebag M.:
Theta-subsumption in a constraint satisfaction perspective. In: Proc. 11th Internat. Conference on Inductive Logic Programming (ILP) (Lectures Notes in Artificial Intelligence 2157), Springer–Verlag, Berlin 2001, pp. 164–178
MR 1906956 |
Zbl 1006.68517
[19] Muggleton S.:
Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13 (1995), 3–4, 245–286
DOI 10.1007/BF03037227
[20] Pfahringer B., Holmes G.: Propositionalization through stochastic discrimination. In: Proc. of the Work-in-Progress Track at the 13th Internat. Conference on Inductive Logic Programming. University of Szeged 2003
[21] Quinlan J. Ross: C4. 5: Programs for Machine Learning. Morgan Kaufmann, xxxxxxx 1992
[22] Sebag M., Rouveirol C.: Tractable induction and classification in first-order logic via stochastic matching. In: Proc. 15th Internat. Joint Conference on Artificial Intelligence, Morgan Kaufmann, xxxxxxx 1997, pp. 888–893
[23] Srinivasan A., Muggleton S. H., Sternberg M. J. E., King R. D.:
Theories for mutagenicity: a study in first-order and feature-based induction. Artificial Intelligence 85 (1996), 1, 2, 277–299
DOI 10.1016/0004-3702(95)00122-0
[25] Witten I. H., Frank E., Trigg L., Hall M., Holmes, G., Cunningham, Sally Jo: Weka: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, xxxxxxx 1999
[26] Zucker J. D., Ganascia J. G.: Representation changes for efficient learning in structural domains. In: Internat. Conference on Machine Learning 1996, pp. 543–551
[27] Železný F., Lavrač, N., Džeroski S.: Constraint-based relational subgroup discovery. In: Proc. Multi-Relational Data Mining Workshop at KDD 2003, Washington 2003