[1] Baccelli F., Cohen G., Olsder, G., Quadrat J.:
Synchronization and Linearity. Wiley, New York 1992
MR 1204266 |
Zbl 0824.93003
[4] Bés A.:
A survey of arithmetical definability: A tribute to Maurice Boffa. Soc. Math. Belgique 2002, pp. 1–54
MR 1900396
[6] Butkovič P., Cuninghame-Green R.:
The equation $A\otimes x=B\otimes y$ over $({\mathbb{R}}\cup \lbrace -\infty \rbrace ,\max ,+)$. Theor. Comp. Sci. 48 (2003), 1, 3–12
MR 1957609
[7] Butkovič P., Hegedüs G.:
An elimination method for finding all solutions of the system of linear equations over an extremal algebra. Ekonom.-Mat. obzor 20 (1984), 2, 203–215
MR 0782401 |
Zbl 0545.90101
[8] Cochet-Terrasson J., Gaubert, S., Gunawardena J.:
A constructive fixed point theorem for min-max functions: Dynamics and Stability of Systems 14 (1999), 4, 407–43.
DOI 10.1080/026811199281967 |
MR 1746112
[9] Cohen G., Gaubert, S., Quadrat J.: Kernels, images and projections in dioids. In: 3rd Workshop on Discrete Event Systems (WODES’96), IEE Edinburgh, August 1996, pp. 151–158
[10] Cohen G., Gaubert, S., Quadrat J.: Linear projectors in the max-plus algebra: In: Proc. IEEE Mediterranean Conference, Cyprus, 1997, CDROM
[11] Cohen G., Gaubert, S., Quadrat J.:
Max-plus algebra and system theory: where we are and where to go now. Annual Reviews in Control 23 (1999), 207–219
DOI 10.1016/S1367-5788(99)90091-3
[12] Cohen G., Gaubert, S., Quadrat J.:
Duality and separation theorem in idempotent semimodules. Linear Algebra and Appl. 279 (2004), 395–422. Also e-print arXiv:math.FA/0212294
DOI 10.1016/j.laa.2003.08.010 |
MR 2039751
[13] Cohen G., Moller P., Quadrat, J., Viot M.: Algebraic tools for the performance evaluation of discrete event systems: IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–5.
[14] Conway J.:
Regular Algebra and Finite Machines. Chapman and Hall, London 1971
Zbl 0231.94041
[15] Cuninghame-Green R.:
Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 166.) Springer, Berlin 1976
MR 0580321 |
Zbl 0739.90073
[17] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes. Thèse, École des Mines de Paris, July 1992
[18] Gaubert S.: Rational series over dioids and discrete event systems. In: Proc. 11th Conference on Analysis and Optimization of Systems – Discrete Event Systems. (Lecture Notes in Control and Inform. Sciences 199.) Sophia Antipolis, June 1994. Springer, Berlin 1995
[20] Gaubert S.: Exotic semirings: Examples and general results: Support de cours de la 26$^{\text{ième}}$ École de Printemps d’Informatique Théorique, Noirmoutier, 199.
[22] Gaubert S., Katz R.:
Reachability Problems for Products of Matrices in Semirings. Research Report 4944, INRIA, September 2003. Also e-print arXiv:math.OC/0310028. To appear in Internat. J. Algebra and Comput
MR 2241626 |
Zbl 1108.20057
[23] Gaubert S., Plus M.:
Methods and applications of (max,+) linear algebra. In: 14th Symposium on Theoretical Aspects of Computer Science (STACS’97), Lübeck, March 1997 (R. Reischuk and M. Morvan, eds., Lecture Notes in Computer Science 1200), Springer, Berlin 1998, pp. 261–282
MR 1473780
[25] Gunawardena J., ed.:
Idempotency. (Publications of the Isaac Newton Institute.) Cambridge University Press, Cambridge 1998
MR 1608370 |
Zbl 1144.68006
[26] Helbig S.:
On Caratheodory’s and Kreĭn-Milman’s theorems in fully ordered groups. Comment. Math. Univ. Carolin. 29 (1988), 1, 157–167
MR 0937558 |
Zbl 0652.06010
[27] Katz R.: Problemas de alcanzabilidad e invariancia en el álgebra max-plus. Ph.D. Thesis, University of Rosario, November 2003
[28] Klimann I.: Langages, séries et contrôle de trajectoires. Thèse, Université Paris 7, 1999
[30] Kolokoltsov V.:
Linear additive and homogeneous operators. In: Idempotent Analysis (Advances in Soviet Mathematics 13), Amer. Math. Soc., Providence, RI 1992
MR 1203786 |
Zbl 0925.47016
[33] Krob D., Rigny A. Bonnier:
A complete system of identities for one letter rational expressions with multiplicities in the tropical semiring. J. Pure Appl. Algebra 134 (1994), 27–50
MR 1299364
[34] Litvinov G., Maslov, V., Shpiz G.:
Idempotent functional analysis: an algebraical approach. Math. Notes 69 (2001), 5, 696–729. Also e-print arXiv:math.FA/0009128
DOI 10.1023/A:1010266012029 |
MR 1846814
[36] Moller P.: Théorie algébrique des Systèmes à Événements Discrets. Thèse, École des Mines de Paris, 1988
[38] Pin J.-E.:
Tropical semirings: In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 50–69
MR 1608374
[40] Samborskiĭ S. N., Shpiz G. B.:
Convex sets in the semimodule of bounded functions: In: Idempotent Analysis, pp. 135–137. Amer. Math. Soc., Providence, RI 1992
MR 1203789
[42] Simon I.:
Limited subsets of the free monoid. In: 19th Annual Symposium on Foundations of Computer Science 1978, pp. 143–150
MR 0539835
[43] Simon I.:
The nondeterministic complexity of a finite automaton. In: Mots – Mélange offert à M. P. Schutzenberger (M. Lothaire, ed.), Hermes, Paris 1990, pp. 384–400
MR 1252678
[45] Walkup E., Borriello G.:
A general linear max-plus solution technique. In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 406–415
MR 1608375 |
Zbl 0898.68035
[46] Wonham W.:
Linear Multivariable Control: A Geometric Approach. Third edition. Springer, Berlin 1985
MR 0770574 |
Zbl 0609.93001
[47] Zimmermann K.:
A general separation theorem in extremal algebras. Ekonom.-Mat. obzor 13 (1977), 2, 179–201
MR 0453607 |
Zbl 0365.90127