Previous |  Up |  Next

Article

Keywords:
$K_{\phi }$-divergence; goodness-of-fit; minimum $K_{\phi }$-divergence estimate
Summary:
In this paper a new family of statistics based on $K_{\phi }$-divergence for testing goodness-of-fit under composite null hypotheses are considered. The asymptotic distribution of this test is obtained when the unspecified parameters are estimated by maximum likelihood as well as minimum $K_{\phi }$-divergence.
References:
[1] Birch N. W.: A new proof of the Pearson-Fisher theorem. Ann. Math. Statist. 35(1964), 817–824 DOI 10.1214/aoms/1177703581 | MR 0169324 | Zbl 0259.62017
[2] Bishop Y. M. M., Fienberg S. E., Holland P. W.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA 1975 MR 0381130 | Zbl 1131.62043
[3] Burbea J.: J-divergences and related topics. Encyclopedia Statist. Sci. 44 (1983), 290–296
[4] Burbea J., Rao C. R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory 28 (1982), 489–495 DOI 10.1109/TIT.1982.1056497 | MR 0672884 | Zbl 0479.94009
[5] Cressie N. C. T. R.: Multinomial Goodness-of-fit Tests. J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 MR 0790631 | Zbl 0571.62017
[6] Csiszár I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299–318 MR 0219345
[7] Fraser D. A. S.: Nonparametric methods in Statistics. Wiley, New York 1957 MR 0083868 | Zbl 0077.12903
[8] Fryer J. C., Robertson C. A.: A comparison of some methods for estimating mixed normal distributions. Biometrika 59 (1972), 639–648 DOI 10.1093/biomet/59.3.639 | MR 0339387 | Zbl 0255.62033
[9] Morales D., Pardo, L., Vajda I.: Asymptotic divergence of estimates of discrete distributions. J. Statist. Plann. Inference 48 (1995), 347–369 DOI 10.1016/0378-3758(95)00013-Y | MR 1368984 | Zbl 0839.62004
[10] Pardo M. C.: On Burbea-Rao divergence based goodness-of-fit tests for multinomial models. J. Multivariate Anal. 69 (1999), 65–87 DOI 10.1006/jmva.1998.1799 | MR 1701407 | Zbl 0947.62008
[11] Pérez T., Pardo J. A.: The $K_{\phi }$ -divergence statistics for categorical data problem. Submitted
[12] Pérez T., Pardo J. A.: Minimum $K_{\phi }$ -divergence estimator. Appl. Math. Lett. (to appear) MR 2045739 | Zbl 1081.62001
[13] Rao C. R.: Diversity and dissimilarity coefficients: a unified approach. J. Theoret. Population Biology 21 (1982), 24–43 DOI 10.1016/0040-5809(82)90004-1 | MR 0662520 | Zbl 0516.92021
[14] Rao J. N. K., Scott A. J.: The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two-way tables. J. Amer. Statist. Assoc. 76 (1981), 221–230 DOI 10.1080/01621459.1981.10477633 | MR 0624328 | Zbl 0473.62010
[15] Read T. R. C., Cressie N. A. C.: Goodness of fit Statistics for discrete multivariate data. Springer–Verlag, Berlin 1988 MR 0955054 | Zbl 0663.62065
[16] Vajda T., Vašek K.: Majorization, concave entropies, and comparison of experiments. Prob. Control Inform. Theory 14 (1985), 105–115 MR 0806056
[17] Zografos K., Ferentinos, K., Papaioannou T.: $\varphi $ -divergence statistics: sampling properties and multinomial goodness of fit divergence tests. Comm. Statist. Theory Methods 19 (1990), 5, 1785–1802 DOI 10.1080/03610929008830290 | MR 1075502
Partner of
EuDML logo