Previous |  Up |  Next

Article

Keywords:
rose of directions; planar section; fibre process; Bayesian statistics; MCMC algorithm
Summary:
The paper concerns estimation of the rose of directions of a stationary fibre process in $R^3$ from the intersection counts of the process with test planes. A new approach is suggested based on Bayesian statistical techniques. The method is derived from the special case of a Poisson line process however the estimator is shown to be consistent generally. Markov chain Monte Carlo (MCMC) algorithms are used for the approximation of the posterior distribution. Uniform ergodicity of the algorithms used is shown. Properties of the estimation method are studied both theoretically and by simulation.
References:
[1] Beneš V., Gokhale A. M.: Planar anisotropy revisited. Kybernetika 36 (2000), 149–164 MR 1760022
[2] Campi S., Haas, D., Weil W.: Approximaton of zonoids by zonotopes in fixed directions. Discrete Comput. Geom. 11 (1994), 419–431 DOI 10.1007/BF02574016 | MR 1273226
[3] Cruz-Orive L. M., Hoppeler H., Mathieu, O., Weibel E. R.: Stereological analysis of anisotropic structures using directional statistics. Appl. Statist. 34 (1985), 14–32 DOI 10.2307/2347881 | MR 0793336 | Zbl 0571.62045
[4] Hilliard J. E.: Specification and measurement of microstructural anisotropy. Trans. Metall. Soc. AIME 224 (1962), 1201–1211
[5] Geyer C. J.: Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7 (1992), 473–511 DOI 10.1214/ss/1177011137
[6] Hlawiczková M., Ponížil, P., Saxl I.: Estimating 3D fibre process anisotropy. In: Topics in Applied and Theoretical Mathematics and Computer Science (V. V. Kluev and N. E. Mastorakis), WSEAS Press, WSEAS, 2001, 214–219 MR 2029416 | Zbl 1039.60009
[7] Kiderlen M.: Non-parametric estimation of the directional distribution of stationary line and fibre processes. Adv. Appl. Prob. 33 (2001), 6–24 DOI 10.1239/aap/999187894 | MR 1825313 | Zbl 0998.62080
[8] Mair B. A., Rao, M., Anderson J. M. M.: Positron emission tomography, Borel measures and weak convergence. Inverse Problems 12 (1996), 965–976 MR 1421659 | Zbl 0862.60098
[9] Matheron G.: Random Sets and Integral Geometry. Wiley, New York 1975 MR 0385969 | Zbl 0321.60009
[10] McLachlan G. J., Krishnan T.: The EM Algorithm and Extensions. Wiley, New York 1997 MR 1417721 | Zbl 1165.62019
[11] Mecke J., Nagel W.: Stationäre räumliche Faserprozesse und ihre Schnittzahlrosen. Elektron. Informationsverarb. Kybernet. 16 (1980), 475–483 MR 0619343 | Zbl 0458.60047
[12] Metropolis N., Rosenbluth A., Rosenbluth M., Teller, A., Teller E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (1953), 1087–1091 DOI 10.1063/1.1699114
[13] Meyn S., Tweedie R.: Markov Chains and Stochastic Stability. Springer, London 1993 MR 1287609 | Zbl 1165.60001
[14] Schneider R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia Math. Appl. 44 (1993) MR 1216521 | Zbl 0798.52001
[15] Stoyan D., Kendall W. S., Mecke J.: Stochastic Geometry and its Applications. Second edition. Wiley, New York 1995 MR 0895588 | Zbl 1155.60001
[16] Tierney L.: Markov chains for exploring posterior distributions. Ann. Statist. 22 (1994), 1701–1762 DOI 10.1214/aos/1176325750 | MR 1329166 | Zbl 0829.62080
[17] Wald A.: Statistical Decision Functions. Wiley, New York 1950 MR 0036976 | Zbl 0229.62001
Partner of
EuDML logo