[1] Beneš V., Gokhale A. M.:
Planar anisotropy revisited. Kybernetika 36 (2000), 149–164
MR 1760022
[2] Campi S., Haas, D., Weil W.:
Approximaton of zonoids by zonotopes in fixed directions. Discrete Comput. Geom. 11 (1994), 419–431
DOI 10.1007/BF02574016 |
MR 1273226
[3] Cruz-Orive L. M., Hoppeler H., Mathieu, O., Weibel E. R.:
Stereological analysis of anisotropic structures using directional statistics. Appl. Statist. 34 (1985), 14–32
DOI 10.2307/2347881 |
MR 0793336 |
Zbl 0571.62045
[4] Hilliard J. E.: Specification and measurement of microstructural anisotropy. Trans. Metall. Soc. AIME 224 (1962), 1201–1211
[5] Geyer C. J.:
Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7 (1992), 473–511
DOI 10.1214/ss/1177011137
[6] Hlawiczková M., Ponížil, P., Saxl I.:
Estimating 3D fibre process anisotropy. In: Topics in Applied and Theoretical Mathematics and Computer Science (V. V. Kluev and N. E. Mastorakis), WSEAS Press, WSEAS, 2001, 214–219
MR 2029416 |
Zbl 1039.60009
[8] Mair B. A., Rao, M., Anderson J. M. M.:
Positron emission tomography, Borel measures and weak convergence. Inverse Problems 12 (1996), 965–976
MR 1421659 |
Zbl 0862.60098
[11] Mecke J., Nagel W.:
Stationäre räumliche Faserprozesse und ihre Schnittzahlrosen. Elektron. Informationsverarb. Kybernet. 16 (1980), 475–483
MR 0619343 |
Zbl 0458.60047
[12] Metropolis N., Rosenbluth A., Rosenbluth M., Teller, A., Teller E.:
Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (1953), 1087–1091
DOI 10.1063/1.1699114
[14] Schneider R.:
Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia Math. Appl. 44 (1993)
MR 1216521 |
Zbl 0798.52001
[15] Stoyan D., Kendall W. S., Mecke J.:
Stochastic Geometry and its Applications. Second edition. Wiley, New York 1995
MR 0895588 |
Zbl 1155.60001