Previous |  Up |  Next

Article

Keywords:
weak solution and uniqueness in law in the SDE-theory; $(b,\sigma )$-stock price; its Girsanov and DDS-reduction; investment process; option pricing
Summary:
The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C({\mathbb{R}}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C({\mathbb{R}}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde{\sigma }(X(t)).$ A martingale option pricing method is presented.
References:
[1] Beckers S.: The constant elasticity of variance model and its implications for option pricing. J. Finance 35 (1980), 661–673 DOI 10.1111/j.1540-6261.1980.tb03490.x
[2] Billingsley P.: Convergence of Probability Measures. Wiley, New York – Chichester – Weinheim 1999 MR 1700749 | Zbl 0944.60003
[3] Borovkov K., Novikov A.: On a new approach to calculating expectations for option pricing. J. Appl. Probab. 39 (2002), 4, 889–895 DOI 10.1239/jap/1037816027 | MR 1938179 | Zbl 1016.60053
[4] Cohn D. C.: Measure Theory. Birkhäuser, Boston 1980 MR 0578344 | Zbl 0860.28001
[5] Cox J. C.: Notes on option pricing I: Constant elasticity of variance diffusions. Stanford University Preprint, 1975
[6] Dupačová J., Hurt, J., Štěpán J.: Stochastic Modeling in Economics and Finance. Kluwer, Dordrecht 2002 Zbl 1094.91051
[7] Geman H., Madan D. B., Yor M.: Stochastic volatility, jumps and hidden time changes. Finance and Stochastics 6 (2002), 63–90 DOI 10.1007/s780-002-8401-3 | MR 1885584 | Zbl 1006.60026
[8] Kallenberg O.: Foundations of Modern Probability. Springer–Verlag, New York – Berlin – Heidelberg 1997 MR 1464694 | Zbl 0996.60001
[9] Karatzas I., Shreve D. E.: Brownian Motion and Stochastic Calculus. Springer–Verlag, New York – Berlin – Heidelberg 1991 MR 1121940 | Zbl 0734.60060
[10] Merton R. C.: Optimum consumption and portfolio rules in a continuous time model. J. Econom. Theory 3 (1971), 373–413 DOI 10.1016/0022-0531(71)90038-X | MR 0456373 | Zbl 1011.91502
[11] Revuz D., Yor M.: Continuous Martingales and Brownian Motion. Springer–Verlag, New York – Berlin – Heidelberg 1994 MR 1303781 | Zbl 1087.60040
[12] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales. Volume 1: Foundations. Cambridge University Press, Cambridge 2000 MR 1796539 | Zbl 0977.60005
[13] Rogers L.C.G., Williams D.: Diffusions, Markov Processes and Martingales. Volume 2: Itô Calculus. Cambridge University Press, Cambridge 2000 MR 1780932 | Zbl 0977.60005
[14] Scott L. O.: Option pricing when variance changes randomly: theory, estimation, and an application. J. Finan. Quant. Anal. 22 (1987), 419–438 DOI 10.2307/2330793
[15] Scott L. O.: Random-variance option pricing: empirical tests of the model and delta-sigma hedging. Adv. in Futures Option Res. 5 (1991), 113–135
[16] Steele J. M.: Stochastic Calculus and Financial Applications. Springer–Verlag, New York – Berlin – Heidelberg 2001 MR 1783083 | Zbl 0962.60001
[17] Wiggins J. B.: Option values under stochastic volatility: theory and empirical estimates. J. Finan. Econom. 19 (1987), 351–372 DOI 10.1016/0304-405X(87)90009-2
[18] Yor M.: Quelques résultats sur certaines measures extrémales à la representation des martingales. (Lecture Notes in Mathematics 695.) Springer–Verlag, New York – Berlin – Heidelberg 1979
Partner of
EuDML logo