[1] Alsina C., Nelsen R. B., Schweizer B.:
On the characterization of a class of binary operations on distributions functions. Statist. Probab. Lett. 17 (1993) 85–89
DOI 10.1016/0167-7152(93)90001-Y |
MR 1223530
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo, G. Mayor and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 3–104
MR 1936384 |
Zbl 1039.03015
[3] Calvo T., Baets, B. De, Fodor J. C.:
The functional equations of Alsina and Frank for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 385–394
MR 1829256
[4] Calvo T., Mesiar R.: Stability of aggegation operators. In: Proc. 1st Internat. Conference in Fuzzy Logic and Technology (EUSFLAT’2001), Leicester, 2001, pp. 475–478
[5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures. In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands 2001, pp. 306–315
[6] DeḂaets B.: T-norms and copulas in fuzzy preference modeling. In: Proc. Linz Seminar’2003, Linz, 2003, p. 101
[10] Janssens S., Baets B. De, Meyer H. De: Bell-type inequalities for commutative quasi-copulas. Preprint, 2003
[12] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. Summer School on Aggregation Operators (AGOP’2001), Oviedo, Spain 2001, pp. 71–76
[13] Kolesárová A., Mordelová, J., Muel E.:
Kernel aggregation operators and their marginals. Fuzzy Sets and Systems, accepted
MR 2045341 |
Zbl 1043.03040
[14] Kolesárová A., Mordelová, J., Muel E.:
Construction of kernel aggregation operators from marginal functions. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 10/s (2002), 37–50
DOI 10.1142/S0218488502001818 |
MR 1962667
[15] Kolesárová A., Mordelová, J., Muel E.: A review of of binary kernel aggregation operators. In: Proc. Summer School on Aggregation Operators (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 97–102
[16] Mesiar R.: Compensatory operators based on triangular norms. In: Proc. Third European Congress on Intelligent Techniques and Soft Computing (EUFIT’95), Aachen 1995, pp. 131–135
[18] Nelsen R. B.:
Copulas: an introduction to their properties and applications. Preprint, 2003
Zbl 1079.60021