Article
Keywords:
drift; Wiener process; partial sums
Summary:
If a stochastic process can be approximated with a Wiener process with positive drift, then its maximum also can be approximated with a Wiener process with positive drift.
References:
[1] Chow Y. S., Hsiung A. C.:
Limiting behavior of $ \max _{j \le n} S_j/j^\alpha $ and the first passage times in a random walk with positive drift. Bull. Inst. Math. Acad. Sinica 4 (1976), 35–44
MR 0407948
[2] Chow Y. S., Hsiung A. C., Yu K. F.:
Limit theorems for a positively drifting process and its related first passage times. Bull. Inst. Math. Acad. Sinica 8 (1980), 141–172
MR 0595527 |
Zbl 0441.60075
[3] Komlós J., Major, P., Tusnády G.:
An approximation of partial sums of independent R. V.’s and the sample D.F.I. Z. Wahrschein. Verw. Gebiete 32 (1975), 111–131
DOI 10.1007/BF00533093 |
MR 0375412
[4] Komlós J., Major, P., Tusnády G.:
An approximation of partial sums of independent R. V.’s and the sample D.F.I. Z. Wahrsch. Verw. Gebiete 34 (1976), 33–58
DOI 10.1007/BF00532688 |
MR 0402883