[1] Allende H., Galbiati J.:
Robust test in time series model. J. Interamerican Statist. Inst. 1 (1996), 48. 35–79
MR 1648377
[3] Anderson B., Moore J.:
Optimal Filtering. Prentice Hall, Englewood Cliffs, N.J. 1979
Zbl 1191.93133
[4] Baxt W. G.:
Use of an artificial neural network for data analysis in clinical decision marking: The diagnosis of acute coronary occlusion. Neural Computational 2 (1990), 480–489
DOI 10.1162/neco.1990.2.4.480
[5] Benitez J. M., Castro J. L., Requena J.:
Are neural network black boxes? IEEE Trans. Neural Networks 8 (1997), 1156–1163
DOI 10.1109/72.623216
[7] Bowerman B. L., O’Connell R. T.:
Forecasting and time series: an applied approach. Third edition. Duxbury Press, 1993
MR 0635926 |
Zbl 0779.62087
[8] Box G. E. P., Jenkins G. M., Reinsel G. C.:
Time Series Analysis, Forecasting and Control. Third edition. Prentice Hall, Englewood Cliffs, N.J. 1994
MR 1312604 |
Zbl 1154.62062
[9] Breiman L., Friedman J., Olshen, R., Stone C. J.:
Classification and Regression Trees. Belmont, C. A. Wadsworth, 1984
MR 0726392 |
Zbl 0541.62042
[10] Brockwell P. J., Davis R. A.:
Time Series Theory and Methods. Springer Verlag, New York 1991
MR 1093459 |
Zbl 1169.62074
[11] Brown R. G.:
Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice Hall, Englewood Cliffs, N.J. 1962
Zbl 0192.25606
[12] Chatfield C.: Forecasting in the 1990s. Statistician 4 (1997), 46, 461–473
[14] Connor J. T., Martin R. D.:
Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks 2 (1994), 5, 240–253
DOI 10.1109/72.279188
[17] Flury B., Riedwyl H.: Multivariate Statistics: A Practical Approach. Chapman Hall, London 1990
[19] Funahashi K. I.:
On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989), 183–192
DOI 10.1016/0893-6080(89)90003-8
[20] Han J., Moraga, C., Sinne S.:
Optimization of feedforward neural networks. Engrg. Appl. Artificial Intelligence 2 (1996), 9, 109–119
DOI 10.1016/0952-1976(95)00001-1
[21] Hornik K., Stinchcombe, M., White H.:
Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989), 359–366
DOI 10.1016/0893-6080(89)90020-8
[22] Hristev R. M.: Artificial Neural Networks. Preprint of a book obtained via Internet from the author, 1998
[23] Hutchinson J. M.:
A Radial Basis Function Approach to Financial Time Series Analysis. Ph.D. Thesis. Massachusetts Institute of Technology, 1994
MR 2716481
[24] Hwang J. T. G., Ding A. A.:
Prediction for artificial neural networks. J. Amer. Statist. Assoc. 92 (1997), 438, 748–757
MR 1467864
[25] Lin J. L., Granger C. W.:
Forecasting from non-linear models in practice. Internat. J. Forecasting 13 (1994), 1–9
DOI 10.1002/for.3980130102
[26] Lippmann R. P.: An introduction to computing with neural nets. IEEE ASSP Magazine (1997), 4–22
[27] Ljung G. M., Bax G. E. P.:
On a measure of lack of fit in time series models. Biometrika 65 (1978), 297–303
DOI 10.1093/biomet/65.2.297
[29] Meditch J. S.:
Stochastic Optimal linear Estimation and Control. MacGraw–Hill, New York 1969
Zbl 0269.93061
[30] Moody J. E., Utans J.: Architecture selection strategies for neural networks. In: Refenes A. P. N. Neural Networks in the Capital Markets, Wiley, New York 1995
[31] Moraga C.: Properties of parametric feedforward neural networks. In: XXIII Conferencia Latinoamericana de Informática, Valparaíso 1997, Vol. 2, pp. 861–870
[32] Pineda F. J.: Generalization of Backpropagation to recurrent and higher order networks. In: Proc. IEEE Conf. Neural Inform. Proc. Syst., 1987
[33] Poli R., Cagnoni S., Coppini, G., Walli G.: A neural network expert system for diagnosing and treating hypertension. Computer (1991), 64–71
[35] Reinsel G. C.:
Elements of Multivariate Time Series Analysis. Springer Verlag, New York 1993
MR 1238940 |
Zbl 1047.62078
[36] Ripley B. D.:
Statistical aspects of neural networks. In: Networks and Chaos-Statistical and Probabilistic Aspect (O. E. Barndorf–Nielsen, J. L. Jensen, and W. S. Kendall, eds.), Chapman and Hall, London 1993
MR 1314652 |
Zbl 0825.68531
[37] Sarle W. S.: Neural networks and statistical methods. In: Proc. of the 19th Anual SAS Users Group International Conference, 1994
[38] Smith J., Yadav S.:
Forecasting cost incurred from unit differencing fractionally integrated processes. Internat. J. Forecasting 10 (1994), 507–514
DOI 10.1016/0169-2070(94)90019-1
[40] Rao T. Subba:
On the theory of bilinear models. J. Roy. Statist. Soc. Ser. B 43 (1981), 244–255
MR 0626772
[41] Sussmann H. J.:
Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks 5 (1992), 589–593
DOI 10.1016/S0893-6080(05)80037-1
[42] Temme K. H., Heider, R., Moraga C.: Generalized neural networks for fuzzy modeling. In: Proc. Internat. Conference of European Society of Fuzzy Logic and Technology, EUSFLAT’99 Palma de Mallorca 1999
[43] Tong H.:
Non-linear Time Series. Oxford University Press, Oxford 1990
Zbl 0835.62076
[45] Vapnik V., Chervoneski A.: The necessary and sufficient conditions for consistency of the method of empirical risk minimization. Pattern Recognition Image Anal. 1 (1991), 284–305
[46] Waibel A., Hanazawa T., Hinton G., Shikano, K., Lang K. J.:
Phoneme recognition using time delay neural networks. IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 324–329
DOI 10.1109/29.21701
[47] Wu F. Y., Yen K. K.: Application of neural network in regression analysis. In: Proc. 14th Annual Conference on Computers and Industrial Engineering, 1992