Previous |  Up |  Next

Article

Keywords:
artificial neural network; non-linear time series model; prediction
Summary:
Artificial neural networks (ANN) have received a great deal of attention in many fields of engineering and science. Inspired by the study of brain architecture, ANN represent a class of non-linear models capable of learning from data. ANN have been applied in many areas where statistical methods are traditionally employed. They have been used in pattern recognition, classification, prediction and process control. The purpose of this paper is to discuss ANN and compare them to non-linear time series models. We begin exploring recent developments in time series forecasting with particular emphasis on the use of non-linear models. Thereafter we include a review of recent results on the topic of ANN. The relevance of ANN models for the statistical methods is considered using time series prediction problems. Finally we construct asymptotic prediction intervals for ANN and show how to use prediction intervals to choose the number of nodes in the ANN.
References:
[1] Allende H., Galbiati J.: Robust test in time series model. J. Interamerican Statist. Inst. 1 (1996), 48. 35–79 MR 1648377
[2] Allende H., Heiler S.: Recursive generalized M-estimates for autoregressive moving average models. J. Time Ser. Anal. 13 (1992), 1–18 DOI 10.1111/j.1467-9892.1992.tb00091.x | MR 1149267 | Zbl 0850.62666
[3] Anderson B., Moore J.: Optimal Filtering. Prentice Hall, Englewood Cliffs, N.J. 1979 Zbl 1191.93133
[4] Baxt W. G.: Use of an artificial neural network for data analysis in clinical decision marking: The diagnosis of acute coronary occlusion. Neural Computational 2 (1990), 480–489 DOI 10.1162/neco.1990.2.4.480
[5] Benitez J. M., Castro J. L., Requena J.: Are neural network black boxes? IEEE Trans. Neural Networks 8 (1997), 1156–1163 DOI 10.1109/72.623216
[6] Beran J.: Statistics for Long-memory Processes. Chapman and Hall, London 1994 MR 1304490 | Zbl 0869.60045
[7] Bowerman B. L., O’Connell R. T.: Forecasting and time series: an applied approach. Third edition. Duxbury Press, 1993 MR 0635926 | Zbl 0779.62087
[8] Box G. E. P., Jenkins G. M., Reinsel G. C.: Time Series Analysis, Forecasting and Control. Third edition. Prentice Hall, Englewood Cliffs, N.J. 1994 MR 1312604 | Zbl 1154.62062
[9] Breiman L., Friedman J., Olshen, R., Stone C. J.: Classification and Regression Trees. Belmont, C. A. Wadsworth, 1984 MR 0726392 | Zbl 0541.62042
[10] Brockwell P. J., Davis R. A.: Time Series Theory and Methods. Springer Verlag, New York 1991 MR 1093459 | Zbl 1169.62074
[11] Brown R. G.: Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice Hall, Englewood Cliffs, N.J. 1962 Zbl 0192.25606
[12] Chatfield C.: Forecasting in the 1990s. Statistician 4 (1997), 46, 461–473
[13] Cheng B., Titterington D. M.: Neural networks: review from a statistical perspective. Statist. Sci. 1 (1994), 2–54 DOI 10.3902/jnns.1.e2 | MR 1278678
[14] Connor J. T., Martin R. D.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks 2 (1994), 5, 240–253 DOI 10.1109/72.279188
[15] Crato N., Ray B. K.: Model selection and forecasting for long-range dependent processes. Internat. J. Forecasting 15 (1996), 107–125 DOI 10.1002/(SICI)1099-131X(199603)15:2<107::AID-FOR612>3.0.CO;2-D
[16] Fine T. L.: Feedforward Neural Network Methodology. Springer, New York 1999 MR 1691898 | Zbl 0963.68163
[17] Flury B., Riedwyl H.: Multivariate Statistics: A Practical Approach. Chapman Hall, London 1990
[18] Friedman J. H.: Multivariate adaptive regression spline. Ann. Statist. 19 (1991), 1–141 DOI 10.1214/aos/1176347963 | MR 1091842
[19] Funahashi K. I.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989), 183–192 DOI 10.1016/0893-6080(89)90003-8
[20] Han J., Moraga, C., Sinne S.: Optimization of feedforward neural networks. Engrg. Appl. Artificial Intelligence 2 (1996), 9, 109–119 DOI 10.1016/0952-1976(95)00001-1
[21] Hornik K., Stinchcombe, M., White H.: Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989), 359–366 DOI 10.1016/0893-6080(89)90020-8
[22] Hristev R. M.: Artificial Neural Networks. Preprint of a book obtained via Internet from the author, 1998
[23] Hutchinson J. M.: A Radial Basis Function Approach to Financial Time Series Analysis. Ph.D. Thesis. Massachusetts Institute of Technology, 1994 MR 2716481
[24] Hwang J. T. G., Ding A. A.: Prediction for artificial neural networks. J. Amer. Statist. Assoc. 92 (1997), 438, 748–757 MR 1467864
[25] Lin J. L., Granger C. W.: Forecasting from non-linear models in practice. Internat. J. Forecasting 13 (1994), 1–9 DOI 10.1002/for.3980130102
[26] Lippmann R. P.: An introduction to computing with neural nets. IEEE ASSP Magazine (1997), 4–22
[27] Ljung G. M., Bax G. E. P.: On a measure of lack of fit in time series models. Biometrika 65 (1978), 297–303 DOI 10.1093/biomet/65.2.297
[28] McCullagh P., Nelder J. A.: Generalized Linear Models. Chapman Hall, London 1989 MR 0727836 | Zbl 0744.62098
[29] Meditch J. S.: Stochastic Optimal linear Estimation and Control. MacGraw–Hill, New York 1969 Zbl 0269.93061
[30] Moody J. E., Utans J.: Architecture selection strategies for neural networks. In: Refenes A. P. N. Neural Networks in the Capital Markets, Wiley, New York 1995
[31] Moraga C.: Properties of parametric feedforward neural networks. In: XXIII Conferencia Latinoamericana de Informática, Valparaíso 1997, Vol. 2, pp. 861–870
[32] Pineda F. J.: Generalization of Backpropagation to recurrent and higher order networks. In: Proc. IEEE Conf. Neural Inform. Proc. Syst., 1987
[33] Poli R., Cagnoni S., Coppini, G., Walli G.: A neural network expert system for diagnosing and treating hypertension. Computer (1991), 64–71
[34] Referes A. P. N., Zapranis A. D.: Neural model identification, variable selection and model adequacy. J. Forecasting 18 (1999), 299–322 DOI 10.1002/(SICI)1099-131X(199909)18:5<299::AID-FOR725>3.0.CO;2-T
[35] Reinsel G. C.: Elements of Multivariate Time Series Analysis. Springer Verlag, New York 1993 MR 1238940 | Zbl 1047.62078
[36] Ripley B. D.: Statistical aspects of neural networks. In: Networks and Chaos-Statistical and Probabilistic Aspect (O. E. Barndorf–Nielsen, J. L. Jensen, and W. S. Kendall, eds.), Chapman and Hall, London 1993 MR 1314652 | Zbl 0825.68531
[37] Sarle W. S.: Neural networks and statistical methods. In: Proc. of the 19th Anual SAS Users Group International Conference, 1994
[38] Smith J., Yadav S.: Forecasting cost incurred from unit differencing fractionally integrated processes. Internat. J. Forecasting 10 (1994), 507–514 DOI 10.1016/0169-2070(94)90019-1
[39] Stern H. S.: Neural networks in applied statistics. Technometrics 38 (1996), 3, 205–214 DOI 10.1080/00401706.1996.10484497 | MR 1411878 | Zbl 0896.62098
[40] Rao T. Subba: On the theory of bilinear models. J. Roy. Statist. Soc. Ser. B 43 (1981), 244–255 MR 0626772
[41] Sussmann H. J.: Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks 5 (1992), 589–593 DOI 10.1016/S0893-6080(05)80037-1
[42] Temme K. H., Heider, R., Moraga C.: Generalized neural networks for fuzzy modeling. In: Proc. Internat. Conference of European Society of Fuzzy Logic and Technology, EUSFLAT’99 Palma de Mallorca 1999
[43] Tong H.: Non-linear Time Series. Oxford University Press, Oxford 1990 Zbl 0835.62076
[44] Vapnik V.: The Nature of Statistical Learning Theory. Springer Verlag, Berlin 1995 MR 1367965 | Zbl 0934.62009
[45] Vapnik V., Chervoneski A.: The necessary and sufficient conditions for consistency of the method of empirical risk minimization. Pattern Recognition Image Anal. 1 (1991), 284–305
[46] Waibel A., Hanazawa T., Hinton G., Shikano, K., Lang K. J.: Phoneme recognition using time delay neural networks. IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 324–329 DOI 10.1109/29.21701
[47] Wu F. Y., Yen K. K.: Application of neural network in regression analysis. In: Proc. 14th Annual Conference on Computers and Industrial Engineering, 1992
Partner of
EuDML logo