Previous |  Up |  Next

Article

Keywords:
linear matrix inequality; stability
Summary:
Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in $\mu $-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control. Convex relaxations of the problem yield tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.
References:
[1] Apkarian P., Tuan H. D.: A sequential SDP/Gauss–Newton algorithm for rank-constrained LMI problems. In: Proc. IEEE Conference on Decision and Control, Phoenix 1999, pp. 2328–2333
[2] Barmish B. R.: New Tools for Robustness of Linear Systems. Macmillan, New York 1994 Zbl 1094.93517
[3] Bhattacharyya S. P., Chapellat, H., Keel L. H.: Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River, N.J. 1995 Zbl 0838.93008
[4] Blondel V. D., Tsitsiklis J. N.: A survey of computational complexity results in systems and control. Automatica 36 (2000), 9, 1249–1274 DOI 10.1016/S0005-1098(00)00050-9 | MR 1834719 | Zbl 0989.93006
[5] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia 1994 MR 1284712 | Zbl 0816.93004
[6] Brixius N., Sheng, R., Potra F. A.: sdpHA: a Matlab implementation of homogeneous interior-point algorithms for semidefinite programming. Optimization Methods and Software 11/12 (1999), 583–596 DOI 10.1080/10556789908805763 | MR 1778430 | Zbl 0973.90525
[7] Ghaoui L. El, Oustry, F., Rami M. Ait: A cone complementarity linearization algorithm for static output feedback and related problems. IEEE Trans. Automat. Control 42 (1997), 8, 1171–1176 MR 1469081
[8] Ghaoui L. El, Commeau J. L.: Lmitool 2. 0 Package: An Interface to Solve LMI Problems. E-Letters on Systems, Control and Signal Processing, Issue 125, January 1999
[9] Ghaoui L. El, (eds.) S. I. Niculescu: Advances in Linear Matrix Inequality Methods in Control. SIAM Advances in Control and Design, Philadelphia, 1999 MR 1736563 | Zbl 0932.00034
[10] Fan M., Tits, A., Doyle J.: Robustness in the presence of joint parametric uncertainty and unmodeled dynamics. IEEE Trans. Automat. Control 36 (1991), 1, 25–38 DOI 10.1109/9.62265 | MR 1084243
[11] Geromel J. C., Peres P. L. D., Bernussou J.: On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381–402 DOI 10.1137/0329021 | MR 1092734 | Zbl 0741.93020
[12] Gupta S.: Robust stability analysis using LMI: Beyond small gain and passivity. Internat. J. Robust Nonlinear Control 6 (1996), 953–968 DOI 10.1002/(SICI)1099-1239(199611)6:9/10<953::AID-RNC261>3.0.CO;2-L | MR 1429435
[13] Haddad W. M., Bernstein D. S.: Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their applications to robust stability. Part I: Continuous-time theory. Internat. J. Robust Nonlinear Control 3 (1993), 313–339
[14] Henrion D., Tarbouriech, S., Šebek M.: Rank-one LMI approach to simultaneous stabilization of linear systems. Systems Control Lett. 38 (1999), 2, 79–89 DOI 10.1016/S0167-6911(99)00049-3 | MR 1751684 | Zbl 1043.93545
[15] Henrion D., Bachelier, O., Šebek M.: $\mathcal{D}$-stability of polynomial matrices. Internat. J. Control 74 (2001), 8, 845–856 MR 1832952
[16] Henrion D., Šebek, M., Bachelier O.: Rank-one LMI approach to stability of 2-D polynomial matrices. Multidimensional Systems and Signal Processing 12 (2001), 1, 33–48 MR 1818911 | Zbl 0976.93043
[17] Henrion D., Arzelier D., Peaucelle, D., Šebek M.: An LMI condition for robust stability of polynomial matrix polytopes. Automatica 37 (2001), 3, 461–468 DOI 10.1016/S0005-1098(00)00170-9 | MR 1843990 | Zbl 0982.93057
[18] Iwasaki T., Hara S.: Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations. IEEE Trans. Automat. Control 43 (1998), 5, 619–630 DOI 10.1109/9.668829 | MR 1618048 | Zbl 0927.93038
[19] Karl W. C., Verghese G. C.: A sufficient condition for the stability of interval matrix polynomials. IEEE Trans. Automat. Control 38 (1993), 7, 1139–1143 DOI 10.1109/9.231473 | MR 1235240 | Zbl 0800.93954
[20] Kučera V.: Discrete Linear Control: The Polynomial Approach. Wiley, Chichester 1979 MR 0573447
[21] Packard A., Doyle J.: The complex singular value. Automatica 29 (1993), 1, 71–109 DOI 10.1016/0005-1098(93)90175-S | MR 1200542
[22] Peaucelle D., Arzelier D.: New LMI-based conditions for robust ${\mathcal{H}}_2$ performance analysis: In Proc. American Control Conference, Chicago 2000, pp. 317–321
[23] Polyx, Inc.: Polynomial Toolbox for Matlab, Release 2. 0.0, 1999. See the web page www.polyx.cz
[24] Scherer C.: A full-block $\mathcal{S}$-procedure with applications: In: Proc. IEEE Conference on Decision and Control, San Diego 1997, pp. 2602–2607
[25] Scorletti G., Ghaoui L. El: Improved LMI conditions for gain scheduling and related control problems: Internat. J. Robust Nonlinear Control 8 (1998), 845–877 DOI 10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I | MR 1639959
[26] Shim D.: Quadratic stability in the circle theorem or positivity theorem. Internat. J. Robust Nonlinear Control 6 (1996), 781–788 DOI 10.1002/(SICI)1099-1239(199610)6:8<781::AID-RNC189>3.0.CO;2-K | MR 1416914 | Zbl 0864.93084
[27] Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38 (1996), 49–95 DOI 10.1137/1038003 | MR 1379041 | Zbl 0845.65023
[28] Willems J. C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991), 259–294 DOI 10.1109/9.73561 | MR 1092818 | Zbl 0737.93004
[29] Zhou K., Doyle, J., Glover K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River, N.J. 1996 Zbl 0999.49500
Partner of
EuDML logo