[1] Apkarian P., Tuan H. D.: A sequential SDP/Gauss–Newton algorithm for rank-constrained LMI problems. In: Proc. IEEE Conference on Decision and Control, Phoenix 1999, pp. 2328–2333
[2] Barmish B. R.:
New Tools for Robustness of Linear Systems. Macmillan, New York 1994
Zbl 1094.93517
[3] Bhattacharyya S. P., Chapellat, H., Keel L. H.:
Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River, N.J. 1995
Zbl 0838.93008
[5] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.:
Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia 1994
MR 1284712 |
Zbl 0816.93004
[7] Ghaoui L. El, Oustry, F., Rami M. Ait:
A cone complementarity linearization algorithm for static output feedback and related problems. IEEE Trans. Automat. Control 42 (1997), 8, 1171–1176
MR 1469081
[8] Ghaoui L. El, Commeau J. L.: Lmitool 2. 0 Package: An Interface to Solve LMI Problems. E-Letters on Systems, Control and Signal Processing, Issue 125, January 1999
[9] Ghaoui L. El, (eds.) S. I. Niculescu:
Advances in Linear Matrix Inequality Methods in Control. SIAM Advances in Control and Design, Philadelphia, 1999
MR 1736563 |
Zbl 0932.00034
[10] Fan M., Tits, A., Doyle J.:
Robustness in the presence of joint parametric uncertainty and unmodeled dynamics. IEEE Trans. Automat. Control 36 (1991), 1, 25–38
DOI 10.1109/9.62265 |
MR 1084243
[11] Geromel J. C., Peres P. L. D., Bernussou J.:
On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381–402
DOI 10.1137/0329021 |
MR 1092734 |
Zbl 0741.93020
[13] Haddad W. M., Bernstein D. S.: Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their applications to robust stability. Part I: Continuous-time theory. Internat. J. Robust Nonlinear Control 3 (1993), 313–339
[15] Henrion D., Bachelier, O., Šebek M.:
$\mathcal{D}$-stability of polynomial matrices. Internat. J. Control 74 (2001), 8, 845–856
MR 1832952
[16] Henrion D., Šebek, M., Bachelier O.:
Rank-one LMI approach to stability of 2-D polynomial matrices. Multidimensional Systems and Signal Processing 12 (2001), 1, 33–48
MR 1818911 |
Zbl 0976.93043
[18] Iwasaki T., Hara S.:
Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations. IEEE Trans. Automat. Control 43 (1998), 5, 619–630
DOI 10.1109/9.668829 |
MR 1618048 |
Zbl 0927.93038
[20] Kučera V.:
Discrete Linear Control: The Polynomial Approach. Wiley, Chichester 1979
MR 0573447
[22] Peaucelle D., Arzelier D.: New LMI-based conditions for robust ${\mathcal{H}}_2$ performance analysis: In Proc. American Control Conference, Chicago 2000, pp. 317–321
[23] Polyx, Inc.: Polynomial Toolbox for Matlab, Release 2. 0.0, 1999. See the web page www.polyx.cz
[24] Scherer C.: A full-block $\mathcal{S}$-procedure with applications: In: Proc. IEEE Conference on Decision and Control, San Diego 1997, pp. 2602–2607
[29] Zhou K., Doyle, J., Glover K.:
Robust and Optimal Control. Prentice Hall, Upper Saddle River, N.J. 1996
Zbl 0999.49500