Previous |  Up |  Next

Article

Keywords:
fuzzy entropy; dynamical system
Summary:
The Hudetz correction of the fuzzy entropy is applied to the $g$-entropy. The new invariant is expressed by the Hudetz correction of fuzzy entropy.
References:
[1] Ban A. I.: Entropy of fuzzy T-dynamical systems. J. Fuzzy Math. 6 (1998), 351–366 MR 1630674
[2] Butnariu D., Klement E. P.: Triangular norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143 DOI 10.1016/0022-247X(91)90181-X | MR 1135265 | Zbl 0751.60003
[3] Dumitrescu D.: Entropy of fuzzy dynamical systems. Fuzzy Sets and Systems 70 (1995), 45–57 DOI 10.1016/0165-0114(94)00245-3 | MR 1323286 | Zbl 0876.28029
[4] Hudetz T.: Quantum topological entropy. In: Quantum probability VIII (L. Accardi et all, eds.), World Scientific 1992
[5] Maličký P., Riečan B.: On the entropy of dynamical systems. In: Proc. Conf. Ergodic Theory and related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 MR 0931138
[6] Mesiar R., Navara M.: $T_s$-tribes and $T_s$-measures. J. Math. Anal. Appl. 201 (1996), 91–102 DOI 10.1006/jmaa.1996.0243 | MR 1397888
[7] Mesiar R., Rybárik J.: Entropy of a fuzzy partition: general model. Fuzzy Sets and Systems 99 (1998), 73–79 DOI 10.1016/S0165-0114(97)00024-9 | MR 1643178
[8] Mesiar R., Vivona D.: A note to the entropy of fuzzy T-dynamical systems. J. Fuzzy Math. To appear MR 1859552
[9] Pap E.: Null–Additive Set Functions. Kluwer, Dordrecht and Ister, Bratislava 1995 MR 1368630 | Zbl 1003.28012
[10] Riečan B., Neubrunn T.: Integral, Measure, and Ordering. Kluwer, Dordrecht and Ister, Bratislava 1997 MR 1489521 | Zbl 0916.28001
[11] Rybárik J.: The entropy based on pseudoarithmetical operations. Tatra Mountains Math. Publ. 6 (1995), 157–164 MR 1363994
Partner of
EuDML logo