[1] J. Aczel:
Lectures on Functional Equations and their Applications. Academic Press, New York 1969.
MR 0208210
[2] O. Hadžič, E. Pap:
On some classes of t-norms important in the fixed point theory. Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28.
MR 1842812
[3] O. Hadžič, E. Pap:
A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems 127 (2002), 333-344.
MR 1899066
[4] O. Hadžič, E. Pap:
Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001.
MR 1896451
[5] T. L. Hicks:
Fixed point theory in probabilistic metric spaces. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72.
MR 0786431 |
Zbl 0574.54044
[7] E. P. Klement R. Mesiar, and E. Pap:
Triangular Norms. (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096
[8] E. P. Klement R. Mesiar, and E. Pap:
Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. J. 5 (2001), 4, 1393-1400.
MR 1895466
[10] R. Mesiar, H. Thiele:
On $T$-quantifiers and $S$-quantifiers: Discovering the World with Fuzzy Logic. (V. Novak and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326.
MR 1858106
[11] E. Pap:
Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995.
MR 1368630 |
Zbl 0968.28010
[12] E. Pap O. Hadžič, and R. Mesiar:
A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory. J. Math. Anal. Appl. 202 (1996), 433-449.
DOI 10.1006/jmaa.1996.0325 |
MR 1406239
[13] V. Radu: Lectures on probabilistic analysis. Surveys. (Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994.
[14] B. Schweizer, A. Sklar:
Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983.
MR 0790314 |
Zbl 0546.60010