Previous |  Up |  Next

Article

Keywords:
probabilistic metric space; triangular norm; Menger space; fixed point theorem
References:
[1] J. Aczel: Lectures on Functional Equations and their Applications. Academic Press, New York 1969. MR 0208210
[2] O. Hadžič, E. Pap: On some classes of t-norms important in the fixed point theory. Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28. MR 1842812
[3] O. Hadžič, E. Pap: A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems 127 (2002), 333-344. MR 1899066
[4] O. Hadžič, E. Pap: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001. MR 1896451
[5] T. L. Hicks: Fixed point theory in probabilistic metric spaces. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72. MR 0786431 | Zbl 0574.54044
[6] O. Kaleva, S. Seikalla: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229. DOI 10.1016/0165-0114(84)90069-1 | MR 0740095
[7] E. P. Klement R. Mesiar, and E. Pap: Triangular Norms. (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000. MR 1790096
[8] E. P. Klement R. Mesiar, and E. Pap: Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. J. 5 (2001), 4, 1393-1400. MR 1895466
[9] K. Menger: Statistical metric. Proc Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | MR 0007576
[10] R. Mesiar, H. Thiele: On $T$-quantifiers and $S$-quantifiers: Discovering the World with Fuzzy Logic. (V. Novak and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326. MR 1858106
[11] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995. MR 1368630 | Zbl 0968.28010
[12] E. Pap O. Hadžič, and R. Mesiar: A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory. J. Math. Anal. Appl. 202 (1996), 433-449. DOI 10.1006/jmaa.1996.0325 | MR 1406239
[13] V. Radu: Lectures on probabilistic analysis. Surveys. (Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994.
[14] B. Schweizer, A. Sklar: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. MR 0790314 | Zbl 0546.60010
[15] V. M. Sehgal, A. T. Bharucha-Reid: Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6 (1972), 97-102. DOI 10.1007/BF01706080 | MR 0310858 | Zbl 0244.60004
[16] R. M. Tardiff: Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl. 165 (1992), 517-523. DOI 10.1016/0022-247X(92)90055-I | MR 1155736 | Zbl 0773.54033
[17] S. Weber: $\bot$-decomposable measures and integrals for Archimedean t-conorm $\bot$. J. Math. Anal. Appl. 101 (1984), 114-138. DOI 10.1016/0022-247X(84)90061-1 | MR 0746230
Partner of
EuDML logo