Previous |  Up |  Next

Article

Keywords:
validation set; $S$-fuzzy logic; $R$-fuzzy logic
Summary:
The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may achieve. We summarize characterizations of validation sets of $S$-fuzzy logics and extend them to the case of $R$-fuzzy logics.
References:
[1] Butnariu D., Klement E. P., Zafrany S.: On triangular norm-based propositional fuzzy logics. Fuzzy Sets and Systems 69 (1995), 241–255 DOI 10.1016/0165-0114(94)00172-4 | MR 1319229 | Zbl 0844.03011
[2] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. (Trends in Logic 7.) Kluwer, Dordrecht 1999 MR 1786097 | Zbl 0937.06009
[4] Dubois D., Prade H.: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85–121 DOI 10.1016/0020-0255(85)90027-1 | MR 0813766 | Zbl 0582.03040
[5] Esteva F., Godo L., Hájek, P., Navara M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Logic 39 (2000), 103–124 DOI 10.1007/s001530050006 | MR 1742377
[6] Gehrke M., Walker, C., Walker E. A.: DeMorgan systems on the unit interval. Internat. J. Intelligent Syst. 11 (1996), 733–750 DOI 10.1002/(SICI)1098-111X(199610)11:10<733::AID-INT2>3.0.CO;2-# | Zbl 0865.04005
[7] Gödel K.: Zum intuitionistischen Aussagenkalkül. Anz. Österreich. Akad. Wiss. Math.–Natur. Kl. 69 (1932), 65–66
[8] Gottwald S.: Mehrwertige Logik. Akademie–Verlag, Berlin 1989 MR 1117450 | Zbl 0714.03022
[9] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Foundations of Application – from a Mathematical Point of View. Vieweg, Braunschweig – Wiesbaden 1993 MR 1218623 | Zbl 1088.03024
[10] Hájek P.: Metamathematics of Fuzzy Logic. (Trends in Logic 4.) Kluwer, Dordrecht 1998 MR 1900263 | Zbl 1007.03022
[11] Hájek P., Godo, L., Esteva F.: A complete many-valued logic with product-conjunction. Arch. Math. Logic 35 (1996), 191–208 DOI 10.1007/BF01268618 | MR 1385789 | Zbl 0848.03005
[12] Hekrdla J., Klement, E.š P., Navara M.: Two approaches to fuzzy propositional logics. Multiple–valued Logic, accepted Zbl 1043.03017
[13] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic 8.) Kluwer, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[14] Klement E. P., Navara M.: Propositional fuzzy logics based on Frank t-norms: A comparison. In: Fuzzy Sets, Logics and Reasoning about Logics (D. Dubois, E. P. Klement and H. Prade, eds., Applied Logic Series 15), Kluwer, Dordrecht 1999, pp. 17–38 MR 1796598 | Zbl 0947.03035
[15] Klement E. P., Navara M.: A survey on different triangular norm-based fuzzy logics. Fuzzy Sets and Systems 101 (1999), 241–251 MR 1676917 | Zbl 0945.03032
[16] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
[17] Łukasiewicz J.: Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes Rendus Séances Société des Sciences et Lettres Varsovie cl. III 23 (1930), 51–77
[18] Navara M.: Satisfiability in fuzzy logics. Neural Network World 10 (2000), 845–858
[19] Navara M.: Product Logic is Not Compact. Research Report No. CTU–CMP–2001–09, Center for Machine Perception, Czech Technical University, Prague 2001
[20] Nguyen H. T., Walker E.: A First Course in Fuzzy Logic. CRC Press, Boca Raton 1997 MR 1404930 | Zbl 1083.03031
[21] Novák V.: On the syntactico-semantical completeness of first-order fuzzy logic. Part I – Syntactical aspects; Part II – Main results. Kybernetika 26 (1990), 47–66, 134–154
[22] Pedrycz W.: Fuzzy relational equations with generalized connectives and their applications. Fuzzy Sets and Systems 10 (1983), 185–201 MR 0705207 | Zbl 0525.04004
[23] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, Amsterdam 1983 MR 0790314 | Zbl 0546.60010
[24] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo