[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.:
Algebraic Foundations of Many-valued Reasoning. (Trends in Logic 7.) Kluwer, Dordrecht 1999
MR 1786097 |
Zbl 0937.06009
[7] Gödel K.: Zum intuitionistischen Aussagenkalkül. Anz. Österreich. Akad. Wiss. Math.–Natur. Kl. 69 (1932), 65–66
[9] Gottwald S.:
Fuzzy Sets and Fuzzy Logic. Foundations of Application – from a Mathematical Point of View. Vieweg, Braunschweig – Wiesbaden 1993
MR 1218623 |
Zbl 1088.03024
[12] Hekrdla J., Klement, E.š P., Navara M.:
Two approaches to fuzzy propositional logics. Multiple–valued Logic, accepted
Zbl 1043.03017
[13] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. (Trends in Logic 8.) Kluwer, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[14] Klement E. P., Navara M.:
Propositional fuzzy logics based on Frank t-norms: A comparison. In: Fuzzy Sets, Logics and Reasoning about Logics (D. Dubois, E. P. Klement and H. Prade, eds., Applied Logic Series 15), Kluwer, Dordrecht 1999, pp. 17–38
MR 1796598 |
Zbl 0947.03035
[15] Klement E. P., Navara M.:
A survey on different triangular norm-based fuzzy logics. Fuzzy Sets and Systems 101 (1999), 241–251
MR 1676917 |
Zbl 0945.03032
[16] Ling C. M.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212
MR 0190575
[17] Łukasiewicz J.: Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes Rendus Séances Société des Sciences et Lettres Varsovie cl. III 23 (1930), 51–77
[18] Navara M.: Satisfiability in fuzzy logics. Neural Network World 10 (2000), 845–858
[19] Navara M.: Product Logic is Not Compact. Research Report No. CTU–CMP–2001–09, Center for Machine Perception, Czech Technical University, Prague 2001
[21] Novák V.: On the syntactico-semantical completeness of first-order fuzzy logic. Part I – Syntactical aspects; Part II – Main results. Kybernetika 26 (1990), 47–66, 134–154
[22] Pedrycz W.:
Fuzzy relational equations with generalized connectives and their applications. Fuzzy Sets and Systems 10 (1983), 185–201
MR 0705207 |
Zbl 0525.04004