Previous |  Up |  Next

Article

Keywords:
convergence theorem; Riesz space; Lebesgue decomposition
Summary:
In some recent papers, results of uniform additivity have been obtained for convergent sequences of measures with values in $l$-groups. Here a survey of these results and some of their applications are presented, together with a convergence theorem involving Lebesgue decompositions.
References:
[1] Boccuto A.: Vitali–Hahn–Saks and Nikodým theorems for means with values in Riesz spaces. Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157–173 MR 1405238 | Zbl 0864.28003
[2] Boccuto A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 29–42 MR 1475257 | Zbl 0918.28009
[3] Boccuto A., Candeloro D.: Uniform $s$-boundedness and convergence results for measures with values in complete l-groups. J. Math. Anal. Appl. 265 (2002), 170–194 DOI 10.1006/jmaa.2001.7715 | MR 1874264 | Zbl 1006.28012
[4] Boccuto A., Candeloro D.: Vitali and Schur-type theorems for Riesz-space-valued set functions. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 85–103 MR 1910780 | Zbl 1096.28006
[5] Boccuto A., Candeloro D.: Dieudonné-type theorems for set functions with values in $(l)$-groups. Real Anal. Exchange, to appear MR 1922663 | Zbl 1067.28011
[6] Brooks J. K.: On the Vitali-Hahn-Saks and Nikodým theorems. Proc. Nat. Acad. Sci. U. S. A. 64 (1969), 468–471 DOI 10.1073/pnas.64.2.468 | MR 0268343 | Zbl 0188.35604
[7] Brooks J. K.: Equicontinuous sets of measures and applications to Vitali’s integral convergence theorem and control measures. Adv. in Math. 10 (1973), 165–171 DOI 10.1016/0001-8708(73)90104-7 | MR 0320268 | Zbl 0249.28009
[8] Brooks J. K.: On a theorem of Dieudonné. Adv. in Math. 36 (1980), 165–168 DOI 10.1016/0001-8708(80)90014-6 | MR 0574646 | Zbl 0441.28006
[9] Candeloro D., Letta G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. XL 9 (1985), 203–213 MR 0899250
[10] Inglesias M. Congost: Medidas y probabilidades en estructuras ordenadas. Stochastica 5 (1981), 45–48 MR 0625841
[11] Dieudonné J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Cienc. 23 (1951), 21–38; 277–282 MR 0042496 | Zbl 0044.12004
[12] Nikodým O.: Sur les suites convergentes de fonctions parfaitement additives d’ensemble abstrait. Monatsc. Math. 40 (1933), 427–432 DOI 10.1007/BF01708880 | MR 1550217 | Zbl 0008.25003
[13] Luxemburg W. A. J., Zaanen A. C.: Riesz Spaces, I. North–Holland, Amsterdam 1971
[14] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers / Ister Science, Bratislava 1997 MR 1489521 | Zbl 0916.28001
[15] Schmidt K.: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. 29 (1986), 23–39 MR 0829177 | Zbl 0569.28011
Partner of
EuDML logo