Previous |  Up |  Next

Article

Keywords:
aggregation operator; hypograph
Summary:
In a fuzzy measure space we study aggregation operators by means of the hypographs of the measurable functions. We extend the fuzzy measures associated to these operators to more general fuzzy measures and we study their properties.
References:
[1] Benvenuti P., Vivona D.: Comonotone aggregation operators. Rend. Mat. 20 (2000), 323–336 MR 1823104 | Zbl 0999.28011
[2] Benvenuti P., Vivona, D., Divari M.: Characterization of comonotone aggregation operators. In: Proc. EUSFLAT, Palma de Mallorca 1999, pp. 367–370
[3] Benvenuti P., Vivona, D., Divari M.: General integral and fuzzy measures on subgraphs. In: VIII. IPMU, Madrid 2000, vol. II, pp. 1173–1176
[4] Benvenuti P., Vivona, D., Divari M.: Aggregation operators and associated fuzzy measures. In: V. International FSTA Conference, Liptovský Mikuláš 2000, pp. 40–44 MR 1821988 | Zbl 1113.68507
[5] Benvenuti P., Vivona, D., Divari M.: Aggregation operators and associated fuzzy measures. Internat. J. Uncertainty, Fuzziness and Knowledge–Based System IX,2 (2001), 197–204 DOI 10.1142/S0218488501000739 | MR 1821988 | Zbl 1113.68507
[6] Birkhoff G.: Lattice Theory. Amer. Math. Soc., Providence, RI 1967 MR 0227053 | Zbl 0537.06001
[7] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A Review on Aggregation Operators. University of Alcalá, Alcalá de Henares, Madrid 2001
[8] Imaoka H.: On a subjective evaluation model by a generalized fuzzy integral. Internat. J. Uncertainty, Fuzziness and Knowledge–Based Systems 5 (1997), 517–529 DOI 10.1142/S0218488597000403 | MR 1480749 | Zbl 1232.68132
[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[10] Klement E. P., Mesiar, R., Pap E.: A geometric approach to aggregation. In: Proc. EUSFLAT 2001, Leicester 2001, pp. 466–469
[11] Mesiar R., Komorníková M.: Aggregation operators. In: Proc. Prim. 36, XI Conference on Applied Mathematics, Novi Sad 1997, pp. 173–211 MR 1492233 | Zbl 0960.03045
[12] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65 (1957), 117–143 DOI 10.2307/1969668 | MR 0084103
[13] Vivona D.: Mathematical aspects of the theory of measures of fuzziness. Mathware and Math. Soft Comp. 3 (1996), 211–224 MR 1414268 | Zbl 0859.04007
[14] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 MR 1212086 | Zbl 0812.28010
[15] Yager R. R.: Aggregation operators and fuzzy systems modeling. Fuzzy Sets and Systems 67 (1994), 129–146 DOI 10.1016/0165-0114(94)90082-5 | MR 1302575 | Zbl 0845.93047
Partner of
EuDML logo