[2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.:
Representation and control of Infinite Dimensional Systems. Birkhauser, Boston 1992
MR 2273323 |
Zbl 1117.93002
[4] Mora M. Dalla, Germani, A., Manes C.:
Design of state observers from a drift-observability property. IEEE Trans. Automat. Control 45 (2000), 6, 1536–1540
DOI 10.1109/9.871767 |
MR 1797411
[5] Dambrine M., Goubet, A., Richard J. P.: New results on constrained stabilizing control of time-delay systems. In: Proc. 34th IEEE Conference on Decision and Control, Vol. 2, New Orleans 1995, pp. 2052–2057
[7] Fattouh A., Sename, O., Dion J. M.:
Robust observer design for time-delay sysems: a Riccati equation approach. Kybernetika 35 (1999), 6, 753–764
MR 1747974
[8] Germani A., Manes, C., Pepe P.: Linearization of input-output mapping for nonlinear delay systems via static state feedback. In: Proc. of IMACS Multiconference on Computational Engineering in Systems Applications, Vol. 1, Lille 1996, pp. 599–602
[9] Germani A., Manes, C., Pepe P.: Linearization and Decoupling of nonlinear delay systems. In: Proc. IEEE 1998 American Control Conference (ACC’98), Philadelphia 1998
[10] Germani A., Manes, C., Pepe P.: A state observer for nonlinear delay systems. In: Proc. 37th IEEE Conference on Decision and Control (CDC’98), Tampa 1998, Vol. 1, pp. 355–360
[11] Germani A., Manes, C., Pepe P.: An observer for M. I.M.O. nonlinear delay systems. In: IFAC World Congress 99, Beijing 1999, Vol. E, pp. 243–248
[12] Germani A., Manes C.:
State observers for nonlinear systems with Smooth/Bounded Input. Kybernetika 35 (1999), 4, 393-413
MR 1723526
[13] Germani A., Manes, C., Pepe P.:
Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika 36 (2000), 1, 31–42
MR 1760886
[14] Germani A., Manes, C., Pepe P.: State observation of nonlinear systems with delayed Output Measurements. In: IFAC Workshop on Time Delay Systems (LTDS2000), Ancona 2000
[16] Gibson J. S.:
Linear quadratic optimal control of hereditary differential systems: infinite-dimensional Riccati equations and numerical approximations. SIAM J. Control Optim. 31 (1983), 95–139
DOI 10.1137/0321006 |
MR 0688442 |
Zbl 0557.49017
[17] Isidori A.:
Nonlinear Control Systems. Third edition. Springer–Verlag, Berlin 1995
Zbl 0931.93005
[19] Lehman B., Bentsman J., Lunel S. V., Verriest E. I.:
Vibrational control of nonlinear time lag systems with bounded delay: averaging theory, stabilizability, and transient behavior. IEEE Trans. Automat. Control 5 (1994), 898–912, 1994
DOI 10.1109/9.284867 |
MR 1274337 |
Zbl 0813.93044
[20] Moog C. H., Castro, R., Velasco M.: The disturbance decoupling problem for nonlinear systems with multiple time-delays: static state feedback solutions. In: Proc. IMACS Multiconference on Computational Engineering in Systems Applications, Lille 1996