[2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.:
Representation and Control of Infinite Dimensional Systems, vol. 1 & 2. Birkhäuser, Boston 1992 & 1993
MR 1182557
[3] Brethé D., Loiseau J. J.: A result that could bear fruit for the control of delay-differential systems. In: Proc. IEEE MSCA’96. Chania 1996
[4] Bhat K., Koivo H.:
Modal characterizations of controllability and observability for time-delay systems. IEEE Trans. Automat. Control 21 (1976), 292–293
DOI 10.1109/TAC.1976.1101165 |
MR 0424297
[5] Byrnes C. I., Spong, M., Tarn T. J.:
A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. Math. Systems Theory 17 (1984), 97–133
DOI 10.1007/BF01744436 |
MR 0739983 |
Zbl 0539.93064
[6] Drakunov S., Özgüner U.: Generalized sliding modes for manifold control of distributed parameter systems. In: Variable Structure and Lyapounov Control (A. S. Zinober, ed., Lecture Notes in Control and Information Sciences 193), Springer, London 1994, pp. 109–129
[9] Fliess M.:
Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl. 203–204 (1994), 429–442
MR 1275520 |
Zbl 0802.93010
[10] Fliess M.:
Variations sur la notion de commandabilité. In: Quelques aspects de la théorie du contrôle. Proc. Journée annuelle Soc. Math. France, Paris 2000, pp. 47–86
MR 1799559
[12] Fliess M., Lévine J., Martin, P., Rouchon P.:
Flatness and defect of non-linear systems: introductory theory and applications. Internat. J. Control 61 (1995), 1327–1361
DOI 10.1080/00207179508921959 |
MR 1613557
[13] Fliess M., Lévine J., Martin, P., Rouchon P.:
A Lie–Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 922–937
DOI 10.1109/9.763209 |
MR 1690537 |
Zbl 0964.93028
[15] Fliess M., Mounier H.: Quasi-finite linear delay systems: theory and applications. In: Proc. IFAC Workshop Linear Time Delay Systems, Grenoble 1998, pp. 211–215
[16] Fliess M., Marquez, R., Mounier H.: PID like regulators for a class of linear delay systems. In: Proc. European Control Conference, Porto 2001
[17] Fliess M., Marquez, R., Mounier H.:
An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control. Submitted
MR 1916231 |
Zbl 1021.93015
[18] Kalman R. E., Falb, L., Arbib M. A.:
Topics in Mathematical System Theory. McGraw–Hill, New York 1969
MR 0255260 |
Zbl 0231.49002
[20] Lang S.:
Algebra. Third edition. Addison–Wesley, Reading, MA 1993
Zbl 1063.00002
[22] Marshall J., Górecki H., Korytowski, A., Walton K.:
Time Delay Systems Stability and Performance Criteria with Applications. Ellis Horwood, New York 1992
Zbl 0769.93001
[23] Martin P., Murray R. M., Rouchon P.: Flat systems. In: Plenary Lectures and Mini–Courses, ECC 97 (G. Bastin and M. Gevers, eds.), Brussels 1997, pp. 211–264
[25] Mounier H.: Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques. Thèse, Université Paris-Sud, Orsay 1995
[27] Mounier H., Rouchon, P., Rudolph J.: Some examples of linear systems with delays. J. Europ. Syst. Autom. 31 (1997), 911–925
[28] Mounier H., Rudolph J.:
Flatness based control of nonlinear delay systems: Example of a class of chemical reactors. Internat. J. Control 71 (1998), 838–871, special issue “Recent Advances in the Control of Non-linear Systems”
DOI 10.1080/002071798221614 |
MR 1658504
[30] Olbrot A. W.:
Stabilizability, detectability, and spectrum assignment for linear autonomous systems with time delays. IEEE Trans. Automat. Control 23 (1978), 887–890
DOI 10.1109/TAC.1978.1101879 |
MR 0528786
[31] Petit N., Creff, Y., Rouchon P.: Motion planning for two classes of nonlinear systems with delays depending on the control. In: Proc. 37th IEEE Conference on Decision and Control, 1998
[37] Sontag E. D.: Linear systems over commutative rings: a survey. Richerche Automat. 7 (1976), 1–34
[43] Zampieri S.: Modellizzazione di Sequenze di Dati Mutlidimensionali. Tesi, Università di Padova 1993