Previous |  Up |  Next

Article

Keywords:
delay system; $\pi $-freeness; tracking control; Kalman’s finite dimensional linear controllability; finite dimensional nonlinear flat systems
Summary:
We study the tracking control of linear delay systems. It is based on an algebraic property named $\pi $-freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.
References:
[1] Artstein Z.: Linear systems with delayed control: a reduction. IEEE Trans. Automat. Control 27 (1982), 869–879 DOI 10.1109/TAC.1982.1103023 | MR 0680488
[2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.: Representation and Control of Infinite Dimensional Systems, vol. 1 & 2. Birkhäuser, Boston 1992 & 1993 MR 1182557
[3] Brethé D., Loiseau J. J.: A result that could bear fruit for the control of delay-differential systems. In: Proc. IEEE MSCA’96. Chania 1996
[4] Bhat K., Koivo H.: Modal characterizations of controllability and observability for time-delay systems. IEEE Trans. Automat. Control 21 (1976), 292–293 DOI 10.1109/TAC.1976.1101165 | MR 0424297
[5] Byrnes C. I., Spong, M., Tarn T. J.: A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. Math. Systems Theory 17 (1984), 97–133 DOI 10.1007/BF01744436 | MR 0739983 | Zbl 0539.93064
[6] Drakunov S., Özgüner U.: Generalized sliding modes for manifold control of distributed parameter systems. In: Variable Structure and Lyapounov Control (A. S. Zinober, ed., Lecture Notes in Control and Information Sciences 193), Springer, London 1994, pp. 109–129
[7] Fliess M.: Some basic structural properties of generalized linear systems. Systems Control Lett. 15 (1990), 391–396 DOI 10.1016/0167-6911(90)90062-Y | MR 1084580 | Zbl 0727.93024
[8] Fliess M.: A remark on Willems’ trajectory characterization of linear controllability. Systems Control Lett. 19 (1992), 43–45 DOI 10.1016/0167-6911(92)90038-T | MR 1170986 | Zbl 0765.93003
[9] Fliess M.: Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl. 203–204 (1994), 429–442 MR 1275520 | Zbl 0802.93010
[10] Fliess M.: Variations sur la notion de commandabilité. In: Quelques aspects de la théorie du contrôle. Proc. Journée annuelle Soc. Math. France, Paris 2000, pp. 47–86 MR 1799559
[11] Fliess M., Bourlès H.: Discussing some examples of linear system interconnections. System Control Lett. 27 (1996), 1–7 DOI 10.1016/0167-6911(95)00029-1 | MR 1375906 | Zbl 0877.93064
[12] Fliess M., Lévine J., Martin, P., Rouchon P.: Flatness and defect of non-linear systems: introductory theory and applications. Internat. J. Control 61 (1995), 1327–1361 DOI 10.1080/00207179508921959 | MR 1613557
[13] Fliess M., Lévine J., Martin, P., Rouchon P.: A Lie–Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 922–937 DOI 10.1109/9.763209 | MR 1690537 | Zbl 0964.93028
[15] Fliess M., Mounier H.: Quasi-finite linear delay systems: theory and applications. In: Proc. IFAC Workshop Linear Time Delay Systems, Grenoble 1998, pp. 211–215
[16] Fliess M., Marquez, R., Mounier H.: PID like regulators for a class of linear delay systems. In: Proc. European Control Conference, Porto 2001
[17] Fliess M., Marquez, R., Mounier H.: An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control. Submitted MR 1916231 | Zbl 1021.93015
[18] Kalman R. E., Falb, L., Arbib M. A.: Topics in Mathematical System Theory. McGraw–Hill, New York 1969 MR 0255260 | Zbl 0231.49002
[19] Lam T. Y.: Serre’s Conjecture. Springer, Berlin 1978 MR 0485842 | Zbl 0373.13004
[20] Lang S.: Algebra. Third edition. Addison–Wesley, Reading, MA 1993 Zbl 1063.00002
[21] Manitius A. J., Olbrot A. W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control 24 (1979), 541–553 DOI 10.1109/TAC.1979.1102124 | MR 0538808 | Zbl 0425.93029
[22] Marshall J., Górecki H., Korytowski, A., Walton K.: Time Delay Systems Stability and Performance Criteria with Applications. Ellis Horwood, New York 1992 Zbl 0769.93001
[23] Martin P., Murray R. M., Rouchon P.: Flat systems. In: Plenary Lectures and Mini–Courses, ECC 97 (G. Bastin and M. Gevers, eds.), Brussels 1997, pp. 211–264
[24] Morse A. S.: Ring models for delay-differential systems. Automatica 12 (1976), 529–531 DOI 10.1016/0005-1098(76)90013-3 | MR 0437162 | Zbl 0345.93023
[25] Mounier H.: Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques. Thèse, Université Paris-Sud, Orsay 1995
[26] Mounier H.: Algebraic interpretations of the spectral controllability of a linear delay system. Forum Mathematicum 10 (1998), 39–58 DOI 10.1515/form.10.1.39 | MR 1490137 | Zbl 0891.93014
[27] Mounier H., Rouchon, P., Rudolph J.: Some examples of linear systems with delays. J. Europ. Syst. Autom. 31 (1997), 911–925
[28] Mounier H., Rudolph J.: Flatness based control of nonlinear delay systems: Example of a class of chemical reactors. Internat. J. Control 71 (1998), 838–871, special issue “Recent Advances in the Control of Non-linear Systems” DOI 10.1080/002071798221614 | MR 1658504
[30] Olbrot A. W.: Stabilizability, detectability, and spectrum assignment for linear autonomous systems with time delays. IEEE Trans. Automat. Control 23 (1978), 887–890 DOI 10.1109/TAC.1978.1101879 | MR 0528786
[31] Petit N., Creff, Y., Rouchon P.: Motion planning for two classes of nonlinear systems with delays depending on the control. In: Proc. 37th IEEE Conference on Decision and Control, 1998
[32] Quillen D.: Projective modules over polynomial rings. Invent. Math. 36 (1976), 167–171 DOI 10.1007/BF01390008 | MR 0427303 | Zbl 0337.13011
[33] Rocha P., Willems J. C.: Behavioral controllability of D-D systems. SIAM J. Control Optim. 35 (1987), 254–264 DOI 10.1137/S0363012995283054 | MR 1430293
[34] Rotman J.: An Introduction to Homological Algebra. Academic Press, Orlando 1979 MR 0538169 | Zbl 1157.18001
[35] Rowen L. H.: Ring Theory. Academic Press, Boston 1991 MR 1095047 | Zbl 0922.00017
[36] Serre J.–P.: Faisceaux algébriques cohérents. Annals of Math. 61 (1955), 197–278 MR 0068874 | Zbl 0067.16201
[37] Sontag E. D.: Linear systems over commutative rings: a survey. Richerche Automat. 7 (1976), 1–34
[38] Spong M. W., Tarn T. J.: On the spectral controllability of delay-differential equations. IEEE Trans. Automat. Control 26 (1981), 527–528 DOI 10.1109/TAC.1981.1102654 | MR 0613571 | Zbl 0474.93014
[40] Willems J. C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991), 259–294 DOI 10.1109/9.73561 | MR 1092818 | Zbl 0737.93004
[41] Youla D. C., Gnavi G.: Notes on $n$-dimensional system theory. IEEE Trans. Circuits and Systems 26 (1979), 105–111 DOI 10.1109/TCS.1979.1084614 | MR 0521657 | Zbl 0394.93004
[42] Youla D. C., Pickel P. F.: The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices. IEEE Trans. Circuits and Systems 31 (1984), 513–518 DOI 10.1109/TCS.1984.1085545 | MR 0747050 | Zbl 0553.13003
[43] Zampieri S.: Modellizzazione di Sequenze di Dati Mutlidimensionali. Tesi, Università di Padova 1993
Partner of
EuDML logo