[3] Cooke K. L., Wiener J.:
A survey of differential equations with piecewise continuous arguments. In: Delay Differential Equations and Dynamical Systems (S. Busenberg and M. Martelli, eds., Lecture Notes in Mathematics 1475), Springer–Verlag, Berlin – Heidelberg 1991, pp. 1–15
MR 1132014 |
Zbl 0737.34045
[5] Hale J. K., Lunel S. M. V.:
Introduction to Functional Differential Equations. Springer–Verlag, New York 1993
MR 1243878 |
Zbl 0787.34002
[7] Kojima A., Uchida, K., Shimemura E.:
Robust stabilization of uncertain time delay systems via combined internal – external approach. IEEE Trans. Automat. Control 38 (1993), 373–378
DOI 10.1109/9.250497 |
MR 1206835 |
Zbl 0773.93066
[8] (ed.) W. Levine:
The Control Handbook. CRC Press, Boca Raton 1996
Zbl 1214.93001
[9] Louisell J.: Instability and quenching in delay systems having constant coefficients and time-varying delays. J. Math. Anal. Appl. Submitted
[10] Louisell J.: New examples of quenching in delay differential equations having time-varying delay. In: Proc. 5th European Control Conference, F 1023–1, Karlsruhe 1999
[11] Louisell J.:
Numerics of the stability exponent and eigenvalue abscissas of a matrix delay system. In: Stability and Control of Time–Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences 228), Springer–Verlag, Berlin – Heidelberg – New York 1997, pp. 140–157
MR 1482576
[13] Louisell J.:
A stability analysis for a class of differential-delay equation having time-varying delay. In: Delay Differential Equations and Dynamical Systems (S. Busenberg and M. Martelli, eds., Lecture Notes in Mathematics 1475), Springer–Verlag, Berlin – Heidelberg 1991, pp. 225–242
MR 1132034
[14] Markus L., Yamabe H.:
Global stability criteria for differential systems. Osaka J. Math. 12 (1960), 305–317
MR 0126019 |
Zbl 0096.28802
[15] Marshall J. E., Gorecki H., Walton, K., Korytowski A.:
Time–Delay Systems: Stability and Performance Criteria with Applications. Ellis Horwood, New York 1992
Zbl 0769.93001
[16] Niculescu S.-I.:
Stability and hyperbolicity of linear systems with delayed state: a matrix–pencil approach. IMA J. Math. Control Inform. 15 (1998), 331–347
DOI 10.1093/imamci/15.4.331 |
MR 1663488
[17] Niculescu S.-I., Souza C. E. de, Dugard, L., Dion J.-M.:
Robust exponential stability of uncertain systems with time–varying delays. IEEE Trans. Automat. Control 43 (1998), 743–748
DOI 10.1109/9.668851 |
MR 1618039 |
Zbl 0912.93053
[18] Repin I. M.:
Quadratic Liapunov functionals for systems with delays. Prikl. Mat. Mekh. 29 (1965), 564–566
MR 0206422
[20] Verriest E. I.: Robust stability of time varying systems with unknown bounded delays. In: Proc. 33rd IEEE Conference Decision and Control, Lake Buena Vista 1994, pp. 417–422