Previous |  Up |  Next

Article

Keywords:
fuzzy semicontinuous function
Summary:
In this paper the concept of somewhat fuzzy semicontinuous functions, somewhat fuzzy semiopen functions are introduced and studied. Besides giving characterizations of these functions, several interesting properties of these functions are also given. More examples are given to illustrate the concepts introduced in this paper.
References:
[1] Azad K. K.: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14–32 DOI 10.1016/0022-247X(81)90222-5 | MR 0626738 | Zbl 0511.54006
[2] Shanna A. S. Bin: On fuzzy strong semicontinuity and fuzzy precontinuity. Fuzzy Sets and Systems 44 (1991), 303–308 DOI 10.1016/0165-0114(91)90013-G | MR 1140864
[3] Chang C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190 DOI 10.1016/0022-247X(68)90057-7 | MR 0236859 | Zbl 0167.51001
[4] Frolík Z.: Remarks concerning the invariance of Baire spaces under mappings. Czechoslovak Math. J. 11 (1961), 86, 381–385 MR 0133098
[5] Gentry K. R., III H. B. Hoyle: Somewhat continuous functions. Czechoslovak Math. J. 21 (1971), 96, 5–12 MR 0278269
[6] Rodabaugh S. E.: The Hausdorff separation axioms for fuzzy topological spaces. Topology Appl. 11 (1980), 3, 319–334 DOI 10.1016/0166-8641(80)90031-0 | MR 0585277
[7] Rodabaugh S. E.: A lattice of continuities for fuzzy topological spaces. J. Math. Anal. Appl. 79 (1981),1, 244–255 DOI 10.1016/0022-247X(81)90022-6 | MR 0603389 | Zbl 0455.54005
[8] Rodabaugh S. E.: Suitability in fuzzy topological spaces. J. Math. Anal. Appl. 79 (1981), 2, 273–285 DOI 10.1016/0022-247X(81)90024-X | MR 0606480 | Zbl 0462.54003
[9] Rodabaugh S. E.: Connectivity and the L-fuzzy unit interval. Rocky Mountain J. Math. 12 (1982), 1, 113–121 DOI 10.1216/RMJ-1982-12-1-113 | MR 0649745 | Zbl 0508.54003
[10] Rodabaugh S. E.: Separation axioms and the fuzzy real lines. Fuzzy Sets and Systems 11 (1983), 2, 163–183 DOI 10.1016/S0165-0114(83)80077-3 | MR 0718743 | Zbl 0525.54002
[11] Rodabaugh S. E.: A categorical accomodation of various notions of fuzzy topology. Fuzzy Sets and Systems. 9 (1983), 3, 241–265 DOI 10.1016/S0165-0114(83)80026-8 | MR 0691797
[12] Singal M. K., Prakash N.: Fuzzy semi open sets. J. Indian Math. Soc. 63 (1997), 1–4, 171–182 MR 1618046 | Zbl 0902.54009
[13] Warren R. H.: Neighbourhoods, bases and continuity in fuzzy topological spaces. Rocky Mountain J. Math. 8 (1978), 459–470 DOI 10.1216/RMJ-1978-8-3-459 | MR 0478091
[14] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo