[1] Abel N. H.: Untersuchungen der Funktionen zweier unabhängigen veränderlichen Groessen $x$ und $y$ wie $f(x,y)$, welche die Eigenschaft haben, dass $f(z,\,f(x,y))$ eine symmetrische Funktion von $x,\,y$ und $z$ ist. J. Reine Angew. Math. 1 (1928), 11–15
[2] Aczél J.: Sur les opérations definies pour des nombres réels. Bull. Soc. Math. France 76 (1949), 59–64
[3] Aczél J.:
Lectures on Functional Equations and their Applications. Academic Press, New York 1966
MR 0208210
[4] Aczél J., Alsina C.:
Characterization of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgments. Methods Oper. Res. 48 (1984), 3–22
MR 0736352
[5] Arnold V.:
Concerning the representability of functions of two variables in the form $X[\Phi (x)+\Psi (y)]$. Uspekhi Mat. Nauk 12 (1957), 119–121
MR 0090623
[6] Bezdek J. C., Harris J. D.:
Fuzzy partitions and relations: An axiomatic basis for clustering. Fuzzy Sets and Systems 1 (1978), 111–127
MR 0502319 |
Zbl 0442.68093
[7] Calvo T., Mesiar R.:
Continuous generated associative aggregation operators. Submitted
Zbl 0996.03034
[8] Baets B. De, Mesiar R.:
Pseudo–metrics and $T$–equivalences. J. Fuzzy Math. 5 (1997), 471–481
MR 1457163
[9] Baets B. De, Mesiar R.:
${\mathcal T}$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223
MR 1645614
[11] Dombi J.:
A general class of fuzzy operators, De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems 8 (1982), 149–163
DOI 10.1016/0165-0114(82)90005-7 |
MR 0666628
[12] Dubois D., Prade H.:
Fuzzy numbers: An overview. In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic (J. C. Bezdek, ed.), CRC Press, Boca Raton 1987, pp. 3–39
MR 0910312 |
Zbl 0663.94028
[13] Dubois D., Kerre E. E., Mesiar R., Prade H.:
Fuzzy interval analysis. In: Mathematics and Fuzzy Sets. Basic Principles. The Handbook of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Kluwer Acad. Publ., Boston 2000, pp. 483–582
MR 1890240 |
Zbl 0988.26020
[14] Féron R.:
Sur les tableaux de corrélation dont les marges sont donneés. Publ. Inst. Statist. Univ. Paris 5 (1956), 3–12
MR 0082246 |
Zbl 0074.14205
[17] Fung L. W., Fu K. S.:
An axiomatic approach to rational decision making in a fuzzy environment. In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. A. Zadeh et al, eds.), Academic Press, New York 1975, pp. 227–256
MR 0398652 |
Zbl 0366.90003
[18] Gottwald S.:
Approximate solutions of fuzzy relational equations and a characterization of $t$-norms that define metrics for fuzzy sets. Fuzzy Sets and Systems 75 (1995), 189–201
MR 1358221 |
Zbl 0856.04006
[19] Hamacher H.: Uber logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt 1978
[20] Hoele U.: Fuzzy equalities and indistinguishability. In: Proc. EUFIT’93, Aachen 1993, pp. 358–363
[24] Klement E. P., Mesiar R., Pap E.:
On the relationship of associative compensatory operators to triangular norms and conorms. Internat. J. Uncertain. Fuzziness Knowledge–Based Systems 4 (1996), 129–144
DOI 10.1142/S0218488596000081 |
MR 1390899 |
Zbl 1232.03041
[25] Klement E. P., Mesiar R., Pap E.: Additive generators of $t$-norms which are not necessarily continuous. In: Proc. EUFIT’98, Aachen 1996, pp. 70–73
[27] Klement E. P., Mesiar R., Pap E.:
Quasi– and pseudo–inverses of monotone functions, and the construction of $t$-norms. Fuzzy Sets and Systems 104 (1999), 3–13
MR 1685803 |
Zbl 0953.26008
[29] Kolesárová A.:
Triangular norm–based addition of linear fuzzy numbers. Tatra Mt. Math. Publ. 6 (1995), 75–81
MR 1363985 |
Zbl 0851.04005
[31] Kolesárová A.: Comparison of quasi–arithmetic means. In: Proc. EUROFUSE–SIC’98, Budapest 1999, pp. 237–240
[32] Kolesárová A.: Limit properties of quasi–arithmetic means. In: Proc. EUFIT’99, Aachen, 1999 (CD–rom)
[34] Komorníková M.: Generated aggregation operators. In: Proc. EUSFLAT’99, Palma de Mallorca 1999, pp. 355–357
[35] Komorníková M.: Smoothly generated discrete aggregation operators. BUSEFAL 80 (1999), 35–39
[36] Ling C. M.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212
MR 0190575
[38] Marko V., Mesiar R.:
A note on a nilpotent lower bound of nilpotent triangular norms. Fuzzy Sets and Systems 104 (1999), 27–34
MR 1685806 |
Zbl 0930.03075
[39] Marko V., Mesiar R.:
Lower and upper bounds of continuous Archimedean $t$-norms. Fuzzy Sets and Systems, to appear
MR 1685806
[40] Marková A.:
A note on $g$-derivative and $g$-integral. Tatra Mt. Math. Publ. 8 (1996), 71–76
MR 1475263 |
Zbl 0918.28023
[42] Marková–Stupňanová A.:
A note on idempotent functions with respect to pseudo–convolution. Fuzzy Sets and Systems 102 (1999), 417–421
MR 1676908
[46] Mesiar R.: Approximation of continuous $t$-norms by strict $t$-norms with smooth generators. BUSEFAL 75 (1998), 72–79
[47] Mesiar R.: On the pointwise convergence of continuous Archimedean $t$-norms and the convergence of their generators. BUSEFAL 75 (1998), 39–45
[48] Mesiar R.: Generated conjunctions and related operators in MV-logic as a basis of AI applications. In: Proc. ECAI’98, Brighton 1998, Workshop WG17
[51] Mostert P. S., Shields A. L.:
On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65 (1957), 117–143
DOI 10.2307/1969668 |
MR 0084103
[53] Pap E.:
$g$-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.–Mat. Fak. Ser. Mat. 23 (1993), 145–156
MR 0939298 |
Zbl 0823.28011
[55] Schweizer B., Sklar A.:
Associative functions and triangle inequalities. Publ. Math. Debrecen 8 (1961), 169–186
MR 0132939
[56] Schweizer B., Sklar A.:
Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69–81
MR 0170967
[58] Sklar A.:
Fonctions de répartition a $n$-dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8 (1959), 229–231
MR 0125600
[59] Smutná D., Vojtáš P.: Fuzzy resolution with residuation of material implication. In: Proc. EUROFUSE–SIC’99, Budapest 1999, pp. 472–476
[61] Viceník P.: A note on generators of $t$-norms. BUSEFAL 75 (1998), 33–38
[62] Viceník P.: Additive generators and discontinuity. BUSEFAL 76 (1998), 25–28
[63] Viceník P.: Additive generators of triangular norms with an infinite set of discontinuity points. In: Proc. EUROFUSE–SIC’99, Budapest 1999, pp. 412–416
[64] Viceník P.: Generated $t$-norms and the Archimedean property. In: Proc. EUFIT’99, Aachen 1999 (CD–rom)
[65] Viceník P.: Non–continuous generated $t$-norms. In: Abstracts of Linz’98 “Topological and Algebraic Structures”, Linz 1999, pp. 9–10
[66] Viceník P.:
Additive generators of non–continuous triangular norms. Preprint, submitted
Zbl 1045.03046
[69] Zadeh L. A.:
The concept of linguistic fuzzy variable and its applications to approximate reasoning. Part I. Inform. Sci. 8 (1975), 199–261
MR 0386369