Previous |  Up |  Next

Article

Keywords:
AR(1) model; AR(2) model
Summary:
An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.
References:
[1] Anděl J.: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–11 MR 0733140
[2] Anděl J.: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127–135 MR 0757732
[3] Anděl J.: On linear processes with given moments. J. Time Ser. Anal. 8 (1987), 373–378 DOI 10.1111/j.1467-9892.1987.tb00001.x | MR 0917790
[4] Anděl J.: AR(1) processes with given moments of marginal distribution. Kybernetika 22 (1989), 337–347 MR 1024709 | Zbl 0701.62087
[5] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1–5 DOI 10.1111/j.1467-9892.1986.tb00481.x | MR 0832348 | Zbl 0587.60033
[6] Anděl J., Garrido M.: On stationary distributions of some time series models. In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193–202 MR 1136274
[7] Anděl J., Gómez M., Vega C.: Stationary distribution of some nonlinear AR(1) processes. Kybernetika 25 (1989), 453–460 MR 1035151 | Zbl 0701.60029
[8] Anděl J., Netuka I., Zvára K.: On threshold autoregressive processes. Kybernetika 20 (1984), 89–106 MR 0747062 | Zbl 0547.62058
[9] Bernier J.: Inventaire des modèles et processus stochastique applicables de la description des déluts journaliers des riviers. Rev. Inst. Internat. Statist. 38 (1970), 50–71 DOI 10.2307/1402324
[10] Davis R. A., Rosenblatt M.: Parameter estimation for some time series models without contiguity. Statist. Probab. Lett. 11 (1991), 515–521 DOI 10.1016/0167-7152(91)90117-A | MR 1116746 | Zbl 0725.62079
[11] Feller W.: An Introduction to Probability Theory and its Applications II. Wiley, New York 1966 MR 0210154
[12] Gaver D. P., Lewis P. A. W.: First–order autoregressive gamma sequences and point processes. Adv. in Appl. Probab. 12 (1980), 727–745 DOI 10.2307/1426429 | MR 0578846 | Zbl 0453.60048
[13] Haiman G.: Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes. In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North–Holland/Elsevier, Amsterdam 1998, pp. 723–730 MR 1661513 | Zbl 0926.62080
[14] Hamilton J. D.: Time Series Analysis. Princeton University Press, Princeton 1994 MR 1278033 | Zbl 0831.62061
[15] Loève M.: Probability Theory. Second edition. Van Nostrand, Princeton 1955 MR 0203748 | Zbl 0385.60001
[16] Rényi A.: Probability Theory. Akadémiai Kiadó, Budapest 1970
[17] Sondhi M. M.: Random processes with specified spectral density and first–order probability density. Bell System Technical J. 62 (1983), 679–701 DOI 10.1002/j.1538-7305.1983.tb04411.x
[18] Štěpán J.: Teorie pravděpodobnosti. Academia, Praha 1987
[19] Tong H.: Non–linear Time Series. Clarendon Press, Oxford 1990 MR 1079320 | Zbl 0835.62076
[20] Research, Wolfram, Inc.: Mathematica, Version 2. 2. Wolfram Research, Inc., Champaign, Illinois 1994
Partner of
EuDML logo