Previous |  Up |  Next

Article

Keywords:
multi-input control design; nonlinear system
Summary:
The use of a multi-input control design procedure for uncertain nonlinear systems expressible in multi-input parametric-pure feedback form to determine the control law for a class of mechanical systems is described in this paper. The proposed procedure, based on the well-known backstepping design technique, relies on the possibility of extending to multi-input uncertain systems a second order sliding mode control approach recently developed, thus reducing the computational load, as well as increasing robustness.
References:
[1] Bartolini G., Ferrara A., Giacomini L., Usai E.: A combined backstepping/second order sliding mode approach to control a class of nonlinear systems. In: Proc. IEEE International Workshop on Variable Structure Systems. Tokyo 1996
[2] Bartolini G., Ferrara A., Usai E.: Applications of a suboptimal discontinuous control algorithm for uncertain second order systems. Internat. J. Robust Nonlin. Control 7 (1997), 299–320 DOI 10.1002/(SICI)1099-1239(199704)7:4<299::AID-RNC279>3.0.CO;2-3 | MR 1445164
[3] Bartolini G., Ferrara A., Usai E.: Chattering avoidance by second–order sliding modes control. IEEE Trans. Automat. Control 34 (1998), 2, 241–246 DOI 10.1109/9.661074 | MR 1605966
[4] Bartolini G., Ferrara A., Usai E., Utkin V. I.: Second order chattering–free sliding mode control for some classes of multi–input uncertain nonlinear systems. In: Proc. of the 6th IEEE Mediterranean Conference on Control and Systems. Alghero 1998
[5] Diong B. M., Medanic J. V.: Simplex–type variable structure controllers for systems with non–matching disturbances and uncertainties. Internat. J. Control 68 (1997), 625–656 DOI 10.1080/002071797223550 | MR 1689669 | Zbl 0882.93010
[6] Kanellakopoulos I., Kokotovic P. V., Morse A. S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Automat. Control 36 (1991), 1241–1253 DOI 10.1109/9.100933 | MR 1130494 | Zbl 0768.93044
[7] Kirk D. E.: Optimal control theory. Prentice Hall, Englewood Cliffs, N.J. 1970
[8] Kokotović P. V., Krstić M., Kanellakopoulos I.: Nonlinear and Adaptive Control Design. Wiley, New York 1995
[9] Levant A.: Sliding order and sliding accuracy in sliding mode control. Internat. J. Control 58 (1993), 1247–1263 DOI 10.1080/00207179308923053 | MR 1250057 | Zbl 0789.93063
[10] Levant A.: Higher order sliding: collection of design tools. In: European Control Conference, Bruxelles 1997
[11] Nam K., Arapostathis A.: A model reference adaptive control scheme for pure-feedback non–linear systems. IEEE Trans. Automat. Control 33 (1988), 803–811 DOI 10.1109/9.1308 | MR 0953874
[12] Seto D., Annaswamy A. M., Baillieul J.: Adaptive control of a class of nonlinear systems with a triangular structure. IEEE Trans. Automat. Control 39 (1994), 1411–1428 DOI 10.1109/9.299624 | MR 1283912
[13] Spong M. W., Vidyasagar M.: Robot Dynamics and Control. Wiley, New York 1989
[14] Su R., Hunt L. R.: A canonical expansion for nonlinear systems. IEEE Trans. Automat. Control 31 (1986), 670–673 DOI 10.1109/TAC.1986.1104358 | MR 0844926 | Zbl 0618.93028
[15] Utkin V. I.: Sliding Modes in Control and Optimization. Springer–Verlag, Berlin 1992 MR 1295845 | Zbl 0748.93044
Partner of
EuDML logo